NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

RE-TARGETING THE GRAZE PERFORMANCE
DEBUGGING TOOL FOR JAVA THREADS AND
ANALYZING THE RE-TARGETING TO
AUTOMATICALLY PARALLELIZED (FORTRAN)
CODE

by

Pedro T.H. Tsai

March 2000

Debra Hensgen

Thesis Advisor:
Rudy Darken

Second Reader:

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED 3

20000530 061

REPORT DOCUMENTATION PAGE Form Approved OMB No. 070+ 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2000 Master’s Thesis
4. TITLE AND SUBTITLE: RE-TARGETING THE GRAZE PERFORMANCE 5. FUNDING NUMBERS

DEBUGGING TOOL FOR JAVA THREADS AND ANALYZING THE RE-
TARGETING TO AUTOMATICALLY PARALLELIZED (FORTRAN) CODE

6. AUTHOR(S) Tsai, Pedro, T.H.

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey, CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
’ AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT: 12b. DISTRIBUTION CODE:
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

This research focuses on the design of a language-independent concept, Glimpse, for performance debugging of
multi-threaded programs. This research extends previous work on Graze, a tool designed and implemented for performance
debugging of C++ programs. Not only is Glimpse easily portable among different programming languages, (i) it is useful
in many different paradigms ranging from few long-lived threads to many short-lived threads; and (ii) it generalizes the
concept of intervals over Graze’s original definition. Glimpse’s portability has been validated by demonstrating its
usefulness in performance debugging of both Java programs as well as automatically parallelized FORTRAN programs.

14. SUBJECT TERMS Performance Debugging, Java Threads, Automatically Parallelized 15. NUMBER OF
FORTRAN applications 7 PAGES 134
16. PRICE CODE
17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- | 20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified 1- UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

i

Approved for public release; distribution is unlimited

RE-TARGETING THE GRAZE PERFORMANCE
DEBUGGING TOOL FOR JAVA THREADS AND
ANALYZING THE RE-TARGETING TO
AUTOMATICALLY PARALLELIZED (FORTRAN)
CODE"

Pedro T.H. Tsai
Naval Research Lab, Monterey CA

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author: /%_/ 7/-—/ DL,» |

Pedro T.H. Tsai

Approved by: \ As Q ’7%»

Debra Henszen, %esis Advisor

Rudy Darken, Second Reader

71 C B

Dan Bogeéglairman
Department of Computer Science

iii

iv

ABSTRACT

This research focuses on the design of a language-independent concept, Glimpse,
for performance debugging of multi-threaded programs. This research extends previ-
ous work on Graze, a tool designed and implemented for performance debugging of
C++ programs. Not ohly is Glimpse easily portable among different programming
languages, (i) it is useful in many different paradigms ranging from few long-lived
threads to many short-lived threads; and (ii) it generalizes the concept of intervals
over Graze’s original definition. Glimpse’s portability has been validated by demon-)
strating its usefulness in performance debugging of both Java programs as well as

automatically parallelized FORTRAN programs.

I.

II.

I11.

IV.

TABLE OF CONTENTS

INTRODUCTION o e 1

1. Motivation oL 1

2. Background 4

3. Organization 5

RELATED WORKS. 7

1. Traditional Approach to Performance Debugging 7

2 Paradyn Parallel Performance Tools 9

300 Pablo. .. 15

4. Delphi R |

5 TimeScan 21

6. SUMMATY o e !

BACKGROUND ON GRAZE 27

1 Graze Specification Language 27

2. Data Collection Facility 30

3 Visualization Tools e e 32

4. Summary e 35
GLIMPSE: GENERALIZING GRAZE AND APPLYING IT TO

MULTI-THREADED JAVA PROGRAMS 37

1. Design Considerations 37

2. Event Collection Code Generation I 45

3. Summary . . J 49

EXPERIENCES USING GLIMPSE WITH JAVA 51

4 1 Description of the StopLight Program 51

2 Defining Events and Intervals For the StopLight Program 53

3. | Visualizing the Result 57

4 Summary 71

vii

VI. APPLYING GLIMPSE TO AUTOMATICALLY PARALLELIZED

FORTRAN PROGRAM 73
1. Parallelizing Programs using OpenMP 73
2. Adapting Glimpse to Monitor Multiprocessing FORTRAN
Code AP e e 76
3. Results from Monitoring Parallel FORTRAN programs . 79
4. Summary 104
VII. SUMMARY e 105
L. Future Work, 105
2. Experiences using Glimpse with concurrent Java and FOR-
TRAN programs L. 107
APPENDIX A. OVERVIEW OF JAVA AND JAVA THREAD . .. 109
a. Overviewof Java 109
b. Java Threads and Synchronization 110
c. Summary of Java Threads and Synchronization 122
APPENDIX B. GRAMMAR OF THE GLIMPSE SPECIFICATION
- LANGUAGE L 123
a. Grammar of the Glimpse Specification Language 123
' b. Keywords for the Glimpse Specification Language 125
APPENDIX C. A NOTE ON EXPERIENCE USING THE FINALIZE
FACILITY OF JAVA’S GARBAGE COLLECTION 127
LIST OF REFERENCES 131
INITIAL DISTRIBUTION LIST\ 133

viii

LIST OF FIGURES

Data flow diagram for the Pablo’s Autopilot decision mechanism. . . .
Gorge can be used to display the interaction between threads in a mes-
sage passing application. For this example, event data from a total of
12 threads are shown, with event data from thread 0 plotted at the top
of the graph and event data from thread 11 plotted at the bottom of the
graph. The connecting lines between threads indicate the previously
defined Transit interval. Time increases along the x-axis.
Nibble graphing the number of Sendmsg and Recvmsg events as a func-
tion of time in a message passing application. Time increases along the
X-BXIS. © « o i e e e
Nibble showing the number of Sendmsg and Recvmsg events in thread
0 and 1, and the differences (the lower line graph) between the number
of messages received by thread 1 and number of messages sent from
thread 0. Time increases along the x-axis.
Glimpse’s Java utility classes for mapping threads to log files.
Steps for collecting event data: 1) code generation, 2) compiling the
monitored program, 3) loading dynamic library during execution. Ar-

row indicates dependency at the various stages. L

Plot of StartMotorArrInt intervals for experiment one. The horizontal

bar indicates the interval between when a car is started and when it
reaches the intersection. The time scale increases to the right. There
are 13 cars in this test case; they are displayed from top to bottom. . .
Plots of the StartMotorArrInt and StopAndGo intervals for experiment
one. The StopAndGo intervals are bound by + and diamond symbols.

Car 1, 3, 5, 9, 10, 12 have StopAndGo interval. e e e

ix

20

34

99

10. -

11.

12.

13.

Plot of LargeTimer and SmallTimer events with StartMotorArrInt
and StopAndGo intervals in experiment one. The symbol + and symbol
x depict when the LargeTimer and SmallTimer objects are instantiated
in the StopLight program. The first pair of timers is created (shown at
the top of the plot) when the Intersection object is initialized, that
is before any car objects are created. e e
NoWaitSmallTimer interval is represented by the vertical line connec-
tion between the symbol x in the car thread and symbol x in the
SmallTimer. There are 7 NoWaitSmallTimer intervals, originating
from cars 2, 4, 6, 7, 8,'11, and 13. These intervals represent the new
SmallTimer objects created by cars that did not have to stop at the
intersection. e e e
Interval StimerLtChanged is shown as the horizontal bar (between sym-

bol x and symbol diamond) in timer threads. These intervals indicate

‘the small timers that change the traffic light as the result of its times-

lice value expiring. The interval LtChangedAndGo is shown as a vertical
line from the right edge of the StimerLtChanged interval of the timer
thread to the right edge of the StopAndGo interval of the car threads.
These intervals represent the notification received by the car threads
when the traffic light is changed by the timer threads.
Plot of StartMotorArrint intervals for experiment two. The horizontal
bar indicates the interval between when the car is started and when it
reaches the intersection. The time scale increases to the right. There
are 13 cars in this test case; they are displayed from top to bottom. . .
Plot of StartMotorArrInt and StopAndGo intervalé for experiment two.

The StopAndGo intervals are bound by + and diamond symbols. Only

car 1, 5, 12, and 13 have a StopAndGo interval. :

66

14.

15.

16.

17.

18.

Plot of LargeTimer and SmallTimer events with StartMotorArrInt

and StopAndGo intervals in experiment two. The symbol + and symbol
x depict when the LargeTimer and SmallTimer objects are instantiated
in the StopLight program. The first pair of timers is created (shown
at the top of the plot) when the Intersection object is initialized,
before any car objects are created.
NoWaitSmallTimer interval is represented by the vertical line connec-
tion between the symbol x in the car thread and symbol x in the
SmallTimer. There are 9 NoWaitSmallTimer intervals, originating
from car 2, 3, 4, 6, 7, 8, 9, 10 and 11. These intervals represent the
SmallTimer objects created by cars that did not have to stop at the
intersection
Interval LtimerLfChanged and StimerLtChanged are shown as the hor-
izontal bar (between symbol x and symbol diamond). The intérval
LtChangedAndGo is shown as a vertical line from the right edge of the
LtimerLtChanged or StimerLtChanged interval in the timer thread to
the right edge of the StopAndGo interval in the car threads. These in-
tervals represent the notification received by the car threads when the
traffic light is changed by the timer threads.
Plots of the counts of event_y as a function of time. The plots are
for 4 lightweight processes using the SIMPLE schedule type under a
low system load condition. Each event_y denotes the completion of a
single loop iteration. The Time increases to the right and the number
of counts is indicated on the vertical axis.
Plots of occurrences of event_y for 4 lightweight processes using the
SIMPLE schedule type under a low system load condition (from the
same data as in Figure 17). Each event_y denotes the completion of a

single loop iteration. The Time increases to the right.

xi

19.

20.

21.

22.

23.

Plots of the counts of event.Y as a function of time. The plots are
for 4 lightweight processes using the SIMPLE schedule type under a
low system load condition. The horizontal line near count value 45
shows that the count value for that particular process is not increasing

with time. This is an indication that the process is blocked during the

duration that count value is not increasing. The Time increases to the

right and the number of counts is indicated on the vertical axis.

Plots of the event_y for 4 lightweight processes using the SIMPLE sched-
ule type under a low system load condition (from the same data as in
Figure 19). Each event_y denotes the completion of a single loop itera-
tion. The large gap for process 0 (at the top of the graph) cbrresponds
to the horizontal line of Figure 19. The gap indicates that the corre-
sponding process is blocked during that period of time.
Plots of the counts of event_y as a function of time. The plots are for 4
lightweight processes ﬁsing DYNAMIC scheduling under a low system
load condition. Each event.y denotes the completion of a single loop
iteration. The Time increases to the right and the number of counts is
indicated on the vertical axis.
Plots of event_y for 4 lightweight processes using DYNAMIC scheduling
under a low system load condition (from the same data as in Figure

21). Each event_y denotes the completion of a single loop iteration.

The Time increases to theright.

Plots of the counts of event_y as a function of time. The plots are for
4 lightweight processes using DYNAMIC scheduling under a medium
system load condition. The horizontal line indicates that one of the
processes is temporarily blocked during the execution in the Do loop.
The Time increases to the right and the number of counts is indicated

onthevertical axis.

xii

85

24.

25.

26.

27.

Plots of event_Y for 4 lightweight processes using DYNAMIC schedul-
ing under a medium system load condition (from the same data as in
Figure 23). Each event_y denotes the completion of single loop iter-
ation. Process 0 (at the top of the graph) has the most number of
event_y, i.e., it executes more iterations of the loop than other pro-‘
cesses. Process 3 was blocked for a period of time (as shown by the
gap between the event sequences). Consequently, it completes the least
number of iterations of theloop.
Plots of the counts of event_y as a function of tirrlle. The plots are for
4 lightweight processes using the GSS scheduling under a low system
load condition. Each event_y denotes the completion of a single loop
iteration. The Time increases to the right and the number of counts is
indicated on the vertical axis. e
Plots of event_y for 4 lightweight processes usiné GSS scheduling under
a low system load condition (from the same data as in Figure 25).
Each event_y denotes the completion of a single loop iteration. The
Time increases to theright.
Plots of the counts of event_y as a function of time. The plots are
for 4 lightweight processes using the SIMPLE schedule type under a
high system load condition. Each event_y denotes the completion of
a single loop iteration. The execution time of this case is significantly
longer than the SIMPLE schedule, low system load case (see Figure
17). Three of the processes have finished their loop iterations, this is
indicated by vertical lines on the left edge of the graph that reach the
count value of 100. The remaining process did not complete its work
until much later. The Time increases to the right and the number of

counts is indicated on the vertical axis.

xiii

28.

29.

30.

31.

Plots of event_y for 4 lightweight processes using SIMPLE scheduling
under a high system load condition (from the same data as in Figure
27). Each event_y denotes the completion of a single loop iteration.
The Time increases to the right. The clusters of events on the left edge
of the graph show that Processes 0, 1, and 3 have finished their portion
of loop iterations, where as the process 2 did not complete its portion

of loop until much later, as shown by the cluster of events on right edge

of the graph. e e e, .

Plots of the counts of event_y as a function of time. The plots are
for 4 lightweight processes using DYNAMIC scheduling under a high
system load condition. The Time increases to the right and the number
of counts is indicated on the vertical axis. Although the workload is
not evenly distributed among the processes, even under the high load
condition, they finish about the same time.
Plots of event_y for 4 lightweight processes using DYNAMIC scheduling
under a high system load condition (from the same data as in Figure
29). Each event_y denotes the cbmpletion of a single loop iteration.
Although we request 4 processes, only 3 processes participated in the
parallel region due to high system load. . F
Plots of the counts of event_y as a function of time. The plots are

for 4 lightweight processes using the GSS schedule type under a high

system load condition. The Time increases to the right and the num-

ber of counts is indicated on the vertical axis. Although we request 4
processes, only 3 processes actually participated in the parallel region.
The workload is not evenly distributed among the processes but they

finish about the same time.

xiv

32.

33.

34.

Plots of event_y for 4 lightweight processes using GSS scheduling under
a high system load condition (from the same data as in Figure 31). Each
event_y denotes the completion of a single loop iteration. Although we

request 4 processes, only 3 processes (0, 1, and 3) actually participated

in the parallel region due to high system load. :

Plots of the counts of event_y as a function of time. The plots are for
4 lightweight processes using the INTERLEAVE schedule type under
a high system load condition. Each event_y denotes the completion of
a single loop iteration. The executioﬁ pattern of this case is similar
to SIMPLE schedule under a high system load condition. (see Figure

27). Three of the processes have finished their loop iterations, this is

indicated by vertical lines on the left edge of the graph that reach the

count value of 100. The remaining process did not complete it work
until much later. The Time increases to the right and the number of
éounts is indicated on the vertical axis.
Plots of event_y for 4 lightweight processés using INTERLEAVE schedul-
ing under a high system load condition (from the same data as in Figure

33). Each event_y denotes the completion of a single loop iteration. The

“Time increases to the right. The clusters of events on the left edge of

the graph show that Processes 0, 1, and 2 have finished their portion of
loop iterations, where as the process 3 did not complete its portion of
loop until much later, as shown by the cluster of events on right edge

ofthegraph.

Xv

101

xvi

ACKNOWLEDGMENTS

I like to thank Debra Hensgen, this thesis would not have been possible without
her guidance and teaching. To my parents, for their support and understanding.

Finally, to Paul, who was my brother, mentor, and my best friend, with all my love.

xvil

I. INTRODUCTION

This thesis focuses on the design and implementation of a language indepen-
dent performance debugging suite called Glimpse. Glimpse collects profiling data from
the execution of multi-threaded programs and provides visualization tools to help pro-
grammers analyze the collected data. In particular, it builds upon the approach taken
by Graze [Ref. 1], a performance debugging tool that monitors C++ érograms that
use the Solaris thread library. Glimpse generalizes Graze, making it both language
independent and more functional. A language independent tool is needed to permit
monitoring of many threaded programs important to the Navy as well as to all of
DoD. Examples of such programs are the Master Environmental Library (MEL),
which is written in Java; and the US Navy Numerical Weather Prediction (NWP)
applications, which are written in FORTRAN. MEL is a new system being developed
by Naval Research Laboratory (NRL) for the purpose of disseminating environmental
data over the network. It is important in such a system to dynamically identify per-
formance bottlenecks. NWP applications, on the other hand, are legacy FORTRAN
code that is being ported to high-end workstations (SGI, DEC/Alpha) and automati-
cally parallized. Here bottlenecks may arise simply from executing the code on a new
platform and, to make the job more difficult, the people porting the code are not, in

many cases, the original programmers.

1. Motivation

The NWP applications, for example, the Navy Operational Global Atmo-
spheric Prediction System (NOGAPS) [Ref. 2] and the Coupled Ocean Atmosphere
Mesoscale Prediction System (COAMPS) [Ref. 3], predict atmospheric parameters
such as winds, temperature, pressure, and precipitation. These predictions are based
on the solution of sets of thermodynamic and fluid dynamic equations. By integrating
these equations forward in time, NOGAPS and COAMPS are able to predict the state
of the atmosphere in the near future. Because NOGAPS and COAMPS are compu-

tationally intensive, and the information they produce is perishable, minimizing the
execution time of these codes is paramount. Most NWP applications use some form of
parallel computing to improve their performance. Rather than reimplementing these
applicaﬁions in a parallel programming language, programmers often only add com-
piler directives to legacy code. These directives cause the compiler to automatically
parallelize the code. Programmers place these compiler directives in what appears
to be the comment sections of the source code, usually near the computationally in-
tensive loop constructs. These directives indicate to the compiler that a particular
loop may be safely parallelized. The compiler will then perform data flow analysis
and attempt to generate the neceésary machine code for the parallel execution of the
loop.

MEL [Ref. 4], another example of an application that can benefit from per-
formance monitoring, is an online digital library for environmental data and other
resources. Environmental resources are often (i) difficult to locate, (ii) frequently du-
plicative, (iii) independently defined and formatted, and (iv) accessible only through
an interface that is unique to each repository. The objective of MEL is to provide
_ the user with a single interface that they can use to discover, query, retrieve, and
order environmental data. Conceptually, the MEL system is analogous to the card
catalog in a library. The card catalog enables the user to search the entire holdings
of the library by specific criteria such as topics, authors and titles. Using the emerg-
ing standards for describing geo-spatial data and contents, MEL provides a digital
metadata database for environmental resources. Since it is not practical to replicate
the existing worldwide sjstem of distributed repositories by creating a single, massive
resource site for environmental information, the designers of MEL instead choose a
three-tier client-server architecture. The first tier is the user interface to the MEL
system. It consists of customers and standard WEB browsers. The second tier is
the MEL access site, which consists of both hardware and software. The MEL access

site fulfills the dual role of handling incoming queries and orders from the customers,

as well as matching the queries and orders to MEL software resident on the third
tier. The third tier is composed of actual resource site databases, including their
extraction and delivery processes. MEL software is installed at each resource site to
facilitate interactions between the MEL access site and the resource sites. The MEL
Service Architecture (MSA) is the software library (API’s) developed to implement
the multi-threaded servers running on each MEL access site and MEL clients running
inside the WEB browser. MSA uses the Common Object Request Broker Architec-
ture (CORBA) framework and communicates over the network via the Internet Inter
ORB Protocol (IIOP). Because there are typically many users and only a few MEL
access sites, the access site server that handles the user query and order is potentially
a bottleneck. A performance bottleneck could also occur between the MEL access
site and the resource site servers that process the requests.

MEL is an object-oriented client-server application, where as NOGAPS and
COAMPS are scientific FORTRAN codes requiring substantial floating-point compu-
tation. Although the programming language used to implement MEL is quite different
from NOGAPS and COAMPS, they share a common feature in that they both use a
threaded programming paradigm. Unlike a sequential program, performance bugs in
a multi-threaded program can be difficult to find using the conventional performance
analysis tools. Particularly difficult to determine are performance bugs due to thread
synchronization and communication. For example, in the automatically parallelized
FORTRAN code, a computational ldop might be distributed across several threads,
with each thread working on a portion of the loop. Typically, there is an iniplicit
‘barrier synchronization’ after the end of the parallel loop; a thread that completes
its portion of work will wait until all other threads have finished their portion of
work. If there is a load inbalance between threads, it is possible that some threads
will idle for a long time while waiting for threads that are still working. Another type
of performance bug is due to the communication overhead between threads. An idle

thread might periodically query other threads to see whether they have completed.

Such activity, if performed frequently, adds significant overhead to the execution of

parallel programs.

2. Background

Conventional performance debugging tools (such as prof and pizie) are de-
signed to collect profiling information on sequential code. Pizie, an object instru-
mentation tool, adds profiling code to the executable. The modified executable is
then run to generafe information on code execution frequency. On the Silicon Graph-
ics systems, Speedshop software (an integrated front end to pizie and prof) reads an
executable, partitions it into basic blocks, and writes out an equivalent executable
program containing additional code that counts the execution of each basic block.
(A basic block is a region of the progrdm that can be entered only at the beginning
and exited only at the end). Data collected by pizie is then analyzed by prof that
generates reports on the various statistics such as the frequency of function calls and
total percentage of time spent in each function. These conventional tools can provide
very useful and detailed information on how a program is spending its time, but they
do not provide information on interaction between threads. For example, pizie would
be able to tell us how much total time a program (all threads) spends in a parallel
loop, but it cannot tell us whether some threads are spending too much time idling
due to a synchronization barrier. '

Parallel debugging tools such as Graze [Ref. 1], Pablo [Ref. 5], PSpec [Ref. 6]
and Paradyn [Ref. 7] have attempted to solve these problems. The first three tools
are user-controlled while the last, Paradyn, searches for types of performance problem
which have, in the past, commonly plagued parallel applications. The user-controlled
tools allow the user to collect profiling information during the execution of threaded
programs and to visualize the information collected so that the user gains insight into
the significance of data that was collected in this manner. Furthermore, these tools"
are more flexible than pizie in that they allow users to define which performance data

is to be collected. In particular, Graze, PSpec and Pablo allow the user to define

events. An event has a name and at least one numeric attribute, the time at which
the event occurred. When an event occurs, these systems record substate information
corresponding to the event. An intrinsic attribute of an event is the identifier of the
thread in which it occurred. This attribute allows the user to distinguish events
occurring in different threads. Additionally, in Graze and PSpec, a user can define an
interval by specifying a designated start event and an end event. The interval is the
concept that allows the user to associate related events. In Graze, this association
can be further specified by the user who requires that the two associated events have
" identical attribute values (with the exception, of course, of the thread identifier and
time). By alloWing the user flexibility in deciding what performance data are to be
‘collected and visualized, experiments focusing on different events and intervals can
be conducted. |

While these tools are headed in the correct direction, more is needed. In partic-
ular, language independent techniques that are also independent of thread paradigm
would be useful. Additionally, the interval concept needs to be generalized. Build-
ing on the approach taken by Graze, this thesis shows that the event and interval
concepts can also be applied to both automatically parallelized FORTRAN program
and to multi-threaded Java programs. A working prototype of such a generalization,

Glimpse, that resulted from this research, is described.

3. Organization

‘The rest of this thesis is organized as follows. In Chapter II the background
and related work on parallel performance debugging are described. Chapter III fo-
cuses on the approach used by Graze. Chapter IV discusses the chaﬁges needed to
generalize Graze into Glimpse. In Chapter V, the results from testing Glimpse with a
multi-threaded Java program are presented. In Chapter VI, we describe how the same
generalization technique can be appliedvto automatically parallelized FORTRAN ap-
plications. That chapter also explains how Glimpse was used to gather and analyze

performance data from a computationally intense NWP application, COAMPS. The

final chapter enumerates lessons learned while designing and implementing Glimpse,

summarizes the contributions of this thesis, and describes suggested future work.

II. RELATED WORKS

In this chapter we describe the approaches others have taken in performance
debugging of parallel programs. In particular, we discuss several software tools that
are available in this application domain.

In section one, the traditional approaches for measuring performance of pro-
grams are discussed. In section two and three, we review two research software tools,
Paradyn and Pablo, that represent more recent developments in the area of parallel
program debugging. These tools implement dynamic instrumentation and automatic
search for performance bottlenecks, intelligent data reduction, and the idea of adap-
tive control (self-steering) systems applied to performance optimization. In section
four, we describe an integrated performance prediction, measurement, and analysis
environment. In section five, commercial software, TimeScan, for debugging parallel

code is described. We summarize these other approaches in section six.

1. Traditional Approach to Performance Debugging

Performance debugging can be characterized by the following activities: mea-
suring performance data from the application, analyzing the data collected to identify
bottlenecks, and optimizing the program code that causes the bottlenecks. In this sec-
tion, we discuss several approaches that are used for data measurement and analysis,
and the trade-off between each approach.

Program Counter Sampling. This approach is also known as profiling. It is
widely used by the UNIX debugging tools such as prof and gprof. In this approach,
a running process is periodically interrupted by the kernel (or some external process)
to record a histogram of the program counter locations. Since each histogram bin
can be related to a basic block (function) in the program, an estimate of the total
time spent in a particular basic block (function) can be obtained by multiplying
the corresponding histogram bin value with the known sampling period. Additional

information such as call stack can also be recorded at the sampling point to provide

information about how the program counter gets there. This information allows the
post-processing program to computé a duration known as the inclusive time of a
function, that is the time spent in é function and all other functions that it calls.
Without the call stack information, only the exclusion time is known. The sampling
rate can be set by the user to control the resolution and the amount of data recorded.

On some systems, instead of using a timer, a hardware performance counter
can be used to trigger the program counter sampling. For example, on the SGI
R10000 systems, one can request the kernel to examine the program counter when the
hardware performance counter specified by the user overflows, and record a histogram
of the value of the program counter at overflow. The types of hardware performance
counters that can be specified for the sampling purpose are counters that record TLB
misses, primary or secondary data cache misses, primary. or secondary instruction
cache misses, etc.

The data collected by program counter sampling is statistical in nature,. vary-
ing from run to run. Because the data collection process is external to the program
being analyzed, no modification to the source code or the object code of the program
is needed. This method has the advantage of low overhead when compared to other
data collection methods.

Basic Block C’buntz’ng. This technique counts the number of times that a basic
block (function) in a program is executed. Because the counting is not a statisti-
cal measure, the observed frequencies are exact. However, the program needs to be
instrumented with code to count the number of times each basic block (function) is
executed. The instrumentation is typically performed on the object file. For example,
on most UNIX system, an object instrumentatioq tool such as pixie reads the exe-
cutable file, and writes out an equivalent. file containing additional code that counts
the number of times each basic block (function) executed. To obtain timing informa-
tion, this technique must either periodicéllyvtimestamp the recorded count data, or

else use a machine model to compute the instruction cycles executed for each basic

block (function), and then infer the time spent in each basic block (function) from

the number of instructions executed. The time estimate obtained using the machine -
model assumes that instructions are executed in an idealized condition.

Event Tracing. In this approach, a program is modified to include data logging
code to record specific events during the execution. To instrument the program for
event tracing, one can annotate the source code and then process the modified code
through a pre-compiler, which translates the programmer’s annotation into actual
code. Another approach is to provide a set of event-logging API’s and a library. The
programmer can then instrument the application by inserting data logging calls at
the appropriate locations in the code, and then compile the application code linkirig
with the event-logging library.

The types of events that can be recorded include procedure entfy. or exit
points, read and write function calls, or any other location specified by the program-
mer. Comparihg to the profiling and basic block counting approaches, event tracing
generates a complete sequence of events that describes the behavior of the program;
thus it is the most general instrumentation approach. Because each event must be
timestamped and recorded separately, and additional substate information must be
recorded at each occurrence of an event, the potential data volume for the event
tracing is large. Statistical techniques have.been proposed as a means to reduce
the amount of the data recorded while still provides an accurate description of the

program behavior [Ref. 8].

2. Paradyn Parallel Performance Tools

Paradyn is a tool developed at University of Wisconsin-Madison for debug-
ging parallel programs [Ref. 7). Paradyn has the following characteristics: (1) it
is designed to monitor long running program and large program with thousands of
procedures; (2) it uses well-defined data abstractions to describe performance related
problems; (3) it provides the ability to automatically search for bottlenecks that are

known to affect the performance of parallel program; (4) it uses dynamic instrumen-

tati‘on to instrument only those parts of programs relevant to finding the current
performance problem; and (5) to leverage off existing visualization tools, Paradyne
provides a standard interface to the performance data that allows the user to incor-
porate external visualization programs for examining the performance data. In the
following discussion, we describe the approaches and components used by Paradyn
to implement the functionality listed above. The components that make up Para-
dyn are the Performance Consultant, the Data Manager, the Metric Manager, the
Instrumentation Manager, and the Visualization Manager.

Performance Data Abstractions. Paradyn uses tW(; basic data abstractions for
collecting, communicating, analyzing, and presenting performance data [Ref. 7]. The
abstractions are the metric- focus grid and the time-histogram. A metric-focus grid
consists of two orthogonal lists of information. The first list is a vector of perfor-
mance metrics such as CPU utilization, memory usage, and counts of floating point
operations. The second list, focus, is a specification of a part of a program expressed
in terms of program resources. Typical resource types are synchronization objects,
source code objects (procedures), threads, and processes. The combination of a list
of perforfnance metrics with a list of program resources forms a matrix (called a grid
in Paradyn) with each metric listed for each program resource. The elements of the
matrix can be single values, such as an average, a minimum or maximum value of a
metric, or time-histograms.

A time-histogram is an array whosé buckets store values of a metric for succes-
sive time intervals; Paradyn uses time-histograms to store metric values as they vary
over time. The user can control the amount of data recorded and the resolution of
the data by setting the total number of the buckets and the width of the bucket (i-e.,
the time interval). If a program runs longer than the bucket width times the number
of buckets, Paradyn doubles the bucket width and re-bins the previous values. The
process of doubling the width of bucket is repeated each time all of the buckets are

filled. This re-sampling technique reduces the rate of data collection and allows Para-

10

dyn to monitor long-running programs while maintaining a reasonable representation
of a metric’s time-varying behavior [Ref. 7).

Automatz’é search of performance problems. To assist the user in locating per-
formance problems in the program, Paradyn uses a well-defined notion, called the W3
Search Model, that organizes information about the types of problems found in pro-
- grams and the various components contained in the current programs. Perforfnance
problems are found by searching through the space defined by the W3 model.

The W3 Search Model abstracts those aspects of a parallel program that can
affect the performance into three domains: (1) Why the application performance is
poor, (2) Where the performance problem is, and (3) When the :problem occur. The
“why” axis contains common types of performance problem that occur in parallel
programs. These potential performance problems are represented as a set of hy-
pothesés and tests. Each hypothesis can have sub-hypotheses, which narrows down
the performdnce problem to a.more specific aspect of the program behavior. For
example, one hypothesis might be that a program is spending too much time on syn-
chronization. The synchronization bound problem can be further attributed to two
sub-hypotheses: (1) too many synchronization operations, or (2) high synchroniza-
tion blocking time. By organizing classes of performance problems into a hierarchical
order, the W3 search model allows the user to “drill down” to a specific cause of the
performance bottleneck.

The “where” axis represents program resources in which performance prob-
lems lie. Searching along the where axis pinpoints the problem to a specific pro-
gram component. Using the previous example, a “why” search might identify that
a program is synchronization bound, a subsequent “where” search. may isolate one
synchronization object from among the many synchfonization objects as the primary
culprit. In Paradyn, the program resources are organized into different type of hi-
erarchies, each resource hierarchy representing a related group of “focuses” that can

be measured. For example, to identify which synchronization object is the primary

11

bottleneck, the search along the “where” axis starts the root of the hierarchy Syn-
cObject. The next level contains different types of synchronization objects such as
the Semaphore, the Lock, and the Barrier. Below the Lock and Barrier abstraction
levels are the individual locks and barriers used by the application. The children of
Semaphore are individual semaphores used in the application. -Another example of
a resource hierarchy is the Procedure abstraction, under which lies objects such as
main.c, read_socket.c, write_socket.c, etc. Other Paradyn resource hierarchies include
Machine (which contains sub-objects such as CPU 1, CPU 2, etc), IO, Memory, and
Process. By abstracting different program resources into a separate hierarchy, Para-
ayn allows the user to concentrate on one abstraction at a time when searching for
performance problems.

The third axis of the W3 search model is the “when”-which is used to identify
at what time the application runs poorly. Programs have distinct phases of execution
and the “when” axis represents periods of time during Which different types of per-
formance problems can occur. For example, a program may consist of three phases of
execution: initialization, computation, and output. Within a single phase of a pro-
gram, the performance tends to be uniform. However, when a program enters a new
phase, its behaviors might change significantly. As a result, decomposing a program’s
execution into phases provides a convenient way for programmers to understand the
performance of their program. Searching along the “when” axis involves testing the
hypotheses for a focus during different intervals of time of the application execution
[Ref. 7).

Paradyn’s Performance Consultant module can automatically discover perfor-
ménce problems by searching through the space defined by the W3 Search Model.
Refinements are made across the “where,” “when,” and “why” axes without involving
the user. The search is conducted by considering a list of possible refinements along
each axis, then ordering this list using internally defined hints. The Performance Con-

sultant selects one or more refinements from an ordered list. If the selected refinement

12

is not true, the next item from the ordered refinement list is then evaluated. Paradyn
can conduct a fully automatic search or allow the user to make manual refinements
to direct the search.

‘The Performance Consultant is also responsible for directing the data collec-
tion process. It makes requests to the Data Manager and receives performance data
from the Data Manager. The data collection process is described next. |

Dynamic Data Instrumentation. Paradyn uses dynamic instrumentation to in-

strument only those parts of the program relevant to finding the current performance

problem. Dynamic instrumentation defers instrumentation of the program until it

is in execution and then inserts, alters, and deletes instrumentation during program
execution.

Requests for dynamic instrumentation are made by the Data Manager in terms
of a metric-focus grid. The requests are translated into instructions for insertion
into the program. The translation is done in two steps. First, the Metric Manager
translates the metric-focus requests into machine independent abstractions. Next,
~ the Instrumentation Manager converts the machine independent representation into
-machine instructions for inserting into the application.

The machine-independent abstractions are expressed using points, primitives,
and predicates. Points are locations in the application’s code where instrumentation
can be inserted (currently, the points understood by Paradyn’s data collection facility
are procedure entry, procedure exit, and individual call stateménts.) Primitives are
operations that change the value of a counter and timer, e.g., set counter, add to
counter, subtract from cbunter, set timer, start timer, and stop timer. Counter and
timer are the two types of instrumentation supported by Parady’s Instrumentation
Manager: counter counts the frequency of some event in the application, and timer
measures the interval between events. Predicates are conditional statements that
guard the execution of primitives. They consist of a Boolean expression and an

action. The Boolean expression can be computed using counters, parameters to a

13

procedure, return values from a procedure, or numeric or relational operators.

Paradyn’s Instrumentation Manager performs the translation of points, prim-
itives, and predicates into machine-level instrumentation. When Paradyn is initially
connected to an application process, the Instrumentation Manager identifies all po-
tential instrumentation points by scanning the application binary’s image. Procedure
entry and exit, as well as call to procedure are detected and noted as points. After
Paradyn is connected to the application, the Instrumentation Manager waits for the
requests from the Metric Manager. The requests are then translatedv into machine
code fragments, called trampolines, for insertion into the binary imagery of the ap-
plication process.

Two types of trampolines, base trampolines and mini-trampolines, are used.
A base trampoline is inserted as follows. The machine instruction at the instru-
mentation point is replaced with a branch to the base trampoline, and the replaced
instruction is relocated fo inside the basé trampoline. The base trampoline contains
calls to mini-trampolines. The calls to mini-trampolines can occur both before and
after the relocated instruction. A mini-trampolines is code that evaluates a specific
predicate or executes a single primitive [Ref. 7]. Paradyn’s Instrumentation Manager
is responsible for generating the appropriate machine instructions for the primitives
and predicates requested by the Metric Manager, and then transfering these instruc-
tions to the application process via a variation of UNIX ptrace facility.

If the Performance Consultant determines from the data collected that a hy-
pothesis is no longer valid, the primitives and predicates associated with testing that
hypothesis can then be removed from the application process by the Instrumentation
Manager.

Open Interface to the Performance Data. Once the instrumentation has been

Iptrace, process trace, is a UNIX system call that allows the parent process to control the
execution of a child process. The parent can examine and modify the “core image” of a child process
in the stopped state, and then cause the child process to continue. The UNIX debugging tool dbx
uses ptrace to implement a breakpoint in the user’s program.

14

inserted into the application, the data is sent back to the Data Manager for process-
ing by other Paradyn modules. Paradyn provides a library and remote procedure
call interface to access the performance data in real-time. Visualization modules
(visi’s) are external processes that use this library and interface. When a visi re-
quests performance data from Paradyn, that request is sent to the Data Manager. If
the request data is already being collected, the Data Manager will send the current
values to the visi, and provide continuous updates as additional data are collected.
If the requested data is no being collected, the Data Manager will request that the
Instrumentation Manager start collecting it. Paradyn currently provides visi’s for
time-histogram plots, bar charts, and tables. The visi interface and library also can
provide performance data for other uses, such as evaluating performance predicates
for application steering, or logging performance data for experiments [Ref. 7].

In addition to Paradyn’s basic data type, counter and timer values, perfor-
mance data from external sources can also be collected. For example, some systems
provide hardware-based counters that collect statistics on page faults, data cache
misses, instruction cache misses, and memory usage activity. Data from these ex-
ternal sources caﬁ be integrated into the Paradyn instrumentation, and subjected to
the same predicate evaluation as other performance metrics. For example, if a sys-
tem provides a counter for the cumulati&e number of page faults in a process, then
Paradyn’s Data Collection Facility can read this cdunter before and after a proce-
dure executes to determine the approximate number of page faults occurring in that

procedure.

3. Pablo

Pablo was created by a research group at the University of Illinois at Urbana-
Champaign. In this section we describe some of the work done by the Pablo group in
the area of performance analysis of parallel systems. In particular, we describe these

research on closed loop adaptive performance systems, and in the area of intelligent

15

performance data reduction to minimize the overhead associated with performance
instrumentation.

The motivation behind the development of adaptive performance monitoring
and application—steering systems comes from the following observations [Ref. 9]:-

1) The traditional performance debugging processes are characterized by the
following activities: (a) Application code is instrumented automatically by object
code modifying programs or by compilers, or manually by inserting calls to the in-
strumentation library. (b) After instrumentation, performance data are captured
from running one or more program executions. (c) The performance data are visual-
ized and analyzed by the programmer to identify the bottlenecks. (d) Finally, based
on measurement and analysis, either the program code that causes the bottleneck is
modified or the runtime system policies are adjusted to better match the program
resource requests.

2) As parallel computing evolves from homogeneous parallel systems to dis-
tributed collections of heterogeneous systems, application tuning: and optimization .
problems become more complex. The time-varying resources of computational envi-
_ronments further exacerbate these problems. Moreover, the performance of parallel
application is sensitive to slight changes in the application code, and to continually
evolving éystem software.

3) Although effective for application codes with repeatable behavior, the tra-
ditional post-mortem tuning model is ill-suited to the parallel application with time
varying resource demands that executes in a distributed heterogeneous environment.
Not only may the execution context not be repeatable across program executions,
resource availability could change during execution.

To address the issues of heterogeneous and dynamic computing environments,
_ the Pablo group has developed a close loop performance analysis and adaptive control
system. This system, called the “Autopilot” ([Ref. 8], [Ref. 9]), contains the following

components:

16

(1) Decision procedures that determine how and when the system should ad-
just resource allocation policies and system parameters. (2) Distributed performance
sensors that collect performance data for decision procedures. (3) Resource policy
actuators that implement changes to the system pafameters and policies in response
to decisions.

Fuzzy Logic Decision Pro¢edures. The Autopilot’s decision procedures accept
data from distributed sensors as inputs and use actuators to implement the results of
decision processes. There are several traditional techniques for implementing such a
decision mechanism, including decisions table and trees. A decision table for resource
management would typically contain one dimension for each of the key performance
sensor values (e.g., file read request sizes and cache hit ratios). Each dimension is
then partitioned into a nurhber of operating range (i.e., small, medium, and large read
requests), and a policy and its associated parameters would be associated with each
table entry. Duri'ng}uses, policies are identified via table lookup using the current
sensor values. -

Constructing a decision table to optimize performance presumes knowledge of A
precise mapping between the resource optimization policies and the sensor parame-
ters. Furthermore, as the number of sensor parameters increases, the storage space
to fully discretize the sensor space and associate policies can grow rapidly. Conse-
quently, the designers of Autopilot choose to use fuzzy logic to implement decision
procedures. The fuzzy logic system allows manipulation of linguistically described
concepts through use of common sense knowledge, e.g., file prefetching benefits small,
sequential reads.

Performance Sensor. The Autopilot performance instrumentation is based on
a set of distributed sensors that extracts information from the execution application,
which may be physically distributed over the network. A sensor has a set of associated
properties that are defined at the time it is created. These properties typically include

sensor name, type, network IP address, and any user-defined attribute-value pairs.

17

Sensors can collect data in either asynchronous or synchronous mode. In the
asynchronous mode; a separate monitoring thread records the values of the program-
variables of interest at intervals specified by the client or at the time when the sensor
is created. In synchronous mode, the sensors are inserted in either the source code or
the object code of the application. »

~'To reduce the amount of data collected locally by the sensor, a sensor can apply
a data transformation function to raw data before recording them. The attached func-
tions can compute simple statistics (e.g., sliding window averages) or more complex
transformations. For example, one type of transformation is to generate qualitative
file access pattern descriptions from file input/output request measures (e.g., con-
verting a sequence of file seek operations to sequential, strided, or random access
description that characterize the file I/O performed by the application).

‘Two additional services, a naming service and a client service, are provided
to facilitate communication between sensors and decision procedures, and between
decision procedures and policy actuators. The naming service supports registration
of remote sensors and actuators, and it handies property-based requests for sensors
and actuators by the remote clients.

The client service of the Autopilot is based on the Nezus communication layer
[Ref. 10]. Nexus creates a global address space that encompasses all processes ex-
ecuting on a network. Before a client can communicate with a sensor -or ‘actuator,
it must first obtain the startpoint énd endpoint of sensors or actuators. Similarly,
sensors and actuators must obtain the startpoint and endpoint of their clienté. The
term startpoint and endpoint refer to an address in the Nexus global address space.
Together these capabilities allow decision procedures to acquire and manage remote
sensors and actuators without knowledge of their physical location or creation times.

Policy Actuator. Autopilot actuators allow clients to modify the value of ap-
plication variables and to remotely invoke application-level functions. Typically, ac-

tuators are used to change the resource management policy (e.g, changing file caching

18

‘ policies). Like the sensors, actuators have associated properties such as name, net-
work IP address, and attached functions.

The following example (from [Ref. 11]) illustrates how the sensors, fuzzy
logic decision procedures, and actuators might be used to control file prefetching in
an adaptive input/output system. A fuzzy logic controller relies on fuzzy sets to
represent the semantic properties of each input (sensor) and output (actuator). The
input values of the fuzzy variables are then mapped to the output space' by a set of
IF-THEN rules.

Figure 1 shows the basic flow of information throﬁgh the fuzzy logic decision
mechanism. The Autopilot sensors provide a time-varying stream of file read ac-
cess classifications. The fuzzification step converts sensor inputs to a value (HIGH,
MEDIUM, LOW) for the ReadClassification fuzzy variable. The following set
of simple fuzzy rules are used to determine the value of output fuzzy variable

PrefetchingFactor:

if ReadClassification SEQUENTIAL then

PrefetchingFactor = HIGH

if ReadClassification = RANDOM then
PrefetchingFactor = LOW

if ReadClassification = UNKNOWN then
PrefetchingFactor = MEDIUM

After defuzzification, the value of the PrefetchingFactor defines the action taken
by an Autopilot actuator to adjust the number of blocks that are prefetched.

The rule sets used by the decision procedures are architecture independent;
neither the source of fuzzy inputs nor the sink of the fuzzy outputs is specified. The
value of ReadClassification is an abstraction whose value can be bound to a senéor
value, or a classification, or even the output of another decision procedure. Similarly,
PrefetchingFactor is an abstraction of an actuator, with no implicit mapping. Fur-

thermore, one can experiment with different sensors, choose different actuator policies,

19

Sensor Data

Y

Name-to-Sensor Mapping

Rule Base

if ReadClassification = SEQUENTIAL then PrefetchingFactor = HIGH
1f ReadClassification = RANDOM then PrefetchingFactor = LOW

if ReadClassification = UNKNOWN then PrefetchingFactor = MEDIUM

Defuzzification

Name-to-Sensor Mapping

'

Actuator Commands

Figure 1. Data flow diagram for the Pablo’s Autopilot decision mechanism.

20

or even control different systems by simply binding the inputs and outputs of decision

procedures to different sensors and actuators.

4. Delphi

Delphi [Ref. 12] is a new performance environment under development by
research groups from University of Illinois, Indiana University, University of Wiscon-
sin, and the Argonne National Lab. Its aim is to provide an integrated performance
prediction, measurement, and analysis environment for programmers to evaluate the
software and hardware design choices, for both existing and proposed systems. These
systems can range from a multi-threaded application running on single processor or
multiprocessor machines, to object-oriented application running in a heterogeneous
and distributed environment (e.g., CORBA applications). Delphi builds on the con-
cepts, experience, and software from several current projects, including the Pablo
and Paradyn performance analysis and measurement tools, the HPC++ and Polaris
FORTRAN compiler systems, and the Globus rhetacomputing system.

An important concept of Delphi is the idea of perforinance prediction. To im-
plement this capability, the Delphi framework includes: (1) compilers that emit code
annotated with symbolic, execution-cost expressions, and embed calls to instrumen-
tation library in the generated executable; and (2) computation models of key system
components, including task schedules, memory, I/O component, network communi- '
cation. Delphi’s cost model can produce bounding estimates for the various phases
of the program using the compiler- derived data on symbolic program variables and
performance measurements from the execution of the instrumented code (the latter

provide calibration data and an input-dependent aspect of program execution).

5. TimeScan
The TimeScan Event Analysis System is a commercial software tool for de-
bugging, analyzing, and tuning the performance of single or multi-process programs,

including programs using light-weight threads. The TimeScan software [Ref. 13] con-

21

sists of two components: (1) an event logging library (ELOG), and (2) a TimeScan
viewer that displays event and state information. The following describes the basic
concepts used in the TimeScane software: |

event. . Events are any program actions, value changes, or procedure calls that
a user wants to monitor in order to understand the behavior of the program. For
TimeScan, each type of event is identified by an evént ID (a unique integer value).
All events with the same event ID are interpreted as an instance of the same type of
event. When events are recorded using ELOG library,. ELOG stores a record of data
for each event instance. Each logged event record containé a timestamp, an event ID,
a data type tag, and a user data item.

event trace. An event trace contains event records from a process (or a thread)
in the order in which they occurred. Each event trace is uniquely identified by the
hostname, process ID, and thread ID (for program using light-weight threads.)

state. States represent time-spans that are marked by a starting aﬁd ending
event. For example, by defining a state between a lock-request and lock-granted event,
one can determine know how much time a program is waiting for a lock. Currently,
only events occurring in the same event trace can be used to form a state.

event log. A log file contains one or more event traces and state information.

To use the TimeScan Event Analysis System, a user would perform the fol-
lowing steps [Ref. 13]: |

1) Use the ELOG library functions [Ref. 14] to instrument the program, and
compile and link the program with the ELOG library. 2) Run the instrumented
program to generate the event log. 3) Run the TimeScan viewer to examine and
analyze the event log and state information.

The ELOG library provides functions (for C and C++ programs) to initialize
a log file, define event name and ID, define state, log event, and to handle various
error conditions. The following pseudo C-code shows how one might instrument a

multi-process program with ELOG:

22

#include <stdio.h>
#include °¢

#define START_SEND 1 /* Define event ID */
#define END_SEND 2

int main(int argc, char* argv[])
{

/* Create Event Log. */
-ELOG_INIT(" ‘network.elog’’);

'/* Register Events */
ELOG_DEFINE(START_SEND, ¢ ‘Start writing to socket’’,0);
ELOG_DEFINE(END_SEND, ‘ ‘End writing to socket’’,0);

/* Define a State called SENDMSG between events START_SEND and

END_SEND. */ :
ELOG_DEFINE_STATE(START_SEND, END_SEND, ¢ ‘SENDMSG’’);

/* Create 4 child processes to do the work. */
for (i=0; i< 4; i++) {

status=fork();

if (status == 0) break; /* child process */

}
if (status != 0) exit(0); /* Parent exits. */

/* Allocate a memory buffer for the event trace. Each thread or
process has its own memory buffer. *x/

ELOG_SETUP(‘ ‘network.elog’’,0,0);

/* Log the Starting event. */
ELOG_LOG(START_SEND, 0);

write_to_socket(data);

/* Log the ending event. */
ELOG_LOG(END_SEND, 0);

/* Flush the buffer to event log file. */
ELOG_OUTPUTQ) ;
}

23

elog.h’’ /% Header file for ELOG function prototype.

The call to ELOG_INIT initializes the log ﬁle.v Next, we defined the START _SEND
and END_SEND event, and a state bounded by the two events.- After the call to
fork(), the parent process exits and the four child processes continue to execute.
The first thing the child process does is to call ELOG_SETUP. The ELOG.SETUP
allocates a memory buffer to store events for that given child process. The first
argument to ELOG_SETUP specifies the log filename of the memory buffer to write
to. (In this example, a single log file is used to store event trace from the four:
processes.) The second argument speciﬁes the tag to associate with the memory
buffer. A value of 0 causes the use of the default tag, which is derived internally by
the ELOG library from the process and thread ID. The third argument specifies the
size for this buffer. Using the default value of 0 will allocate space for approximately
1000 events. After the memory buffer is set up, calls to ELOG_LOG add the event
instances to the buffer. Finally, ELOG_OUTPUT flushes the content of buffer to the
log file. |

Once the log file is generated, the user can visualize and analyze the data
using the TimeScan viewer. The TimeScan viewer provides a facility to display event
records and states as a function of time, with the Y-axis representing the trace from a
different process or thread, and X-axis representing the time of the program execution.
The viewer also provides support for viewing a subset of events and states, for editing
the display symbol and color of the events and states, and for displaying histograms

of state durations [Ref. 13].

6. Summary

In this chapter, we provide an overview of some of the existing tools for per-
formance debugging and analysis of parallel programs. In particular, the dynamic
instrumentation and automatic search of performance bottlenecks technique imple-
mented by Paradyn, and the adaptive control and steering system for performance
optimization by Pablo are discussed. Recent research efforts (Delphi: An integrated,

Language-Directed Performance Prediction, Measurement and Analysis Environment,

24

see [Ref. 12]) aim to combine both dynamic instrumentation and automatica search
for performance bottlenecks (W3 search model), with adaptive resource management,
compiler integration, and performance prediction capability into an integrated envi-

ronment.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

I11. BACKGROUND ON GRAZE

Graze is a framework for the collection, visualization, and analysis of perfor-
mance data from applications.with multiple threads of control. It was developed at
the University of Cincinnati and has been successfully used to identify performance
bottlenecks in a multi-threaded VHDL simulation application [Ref. 1}. Unlike the
traditional profiling tools such as prof and pizie, Graze lets the user specify exact
locations in the program and types of run-time data to be recorded. The data col-
lected by Graze are thread specific, that is data can be attributed to a specific thread
of the monitored program. The ability to examine user-specified run-time data from
the applications and to correlate information from different threads is important for
identifying possible performance problems such as the overhead due to communica-
tion and synchronization among threads in a program. Such problems are difficult to
detect from the conventional profiling data.

The Graze framework is comprised of three components: a specification lan-
guage, a data collection facility, and a generic data visualization facility. In the

following sections, we will describe each component of Graze in more detail.

1. Graze Specification Language
The Graze specification language [Ref. 1] is similar to the performance spec-
ification language used‘ by PSpec. PSpec is a system designed for automated per-
formance verification. PSpec uses assertion checking. Its specification language is -
designed for specifying performance assertions that are checked at run-time [Ref. 15].
For example, the following PSpec specification defines two events, an interval, and an
assertion to check the performance of an I/O operation executed by a program:
timed event StartRead(); EndRead().
interval Read = s:StartRead, e: EndRead
metrics time= ts(e) - ts(s)

~end Read.
assert. { & r:Read: r.time < 10 ms }.

27

In this example [Ref. 15], StartRead and EndRead are declared to be timed events,
which means they have -implicit timestamp attributes. A Read interval starts with
an event of type StartRead and ends with the next event of type EndRead after the
start event. The variables s and e signify the start and end events for an interva] of
type Read. Each Read interval has a time metric whose value is the difference of its
start and end timestamps (ts is a PSpec built-in function that returns the timestamp
of an event.) The assert statement checks the elapsed time of any Read operation
performed by the program. The statement assert { & r:Read: r.time < 10 ms
} can be read as: “for all intervals, r of type Read, the value of r’s time metric is at
most ten milliseconds.”

The Graze specification language uses several concepts from the PSpec lan-
guage; in particular, the event and interval constructs. An event denotes a specific
point of interest during the execution of an application; it has a type name and asso-
ciated attributes. Every Graze event has two infrinsic attributes: its owner (a value
that identifies the thread that produced the event) and a timestamp. Additional at-
tributes can be specified by the user to cause Graze to obtain more detailed run-time
_ information. Using a message passing application as an example, the following en-

tries specify events corresponding to the preparing, sending and receiving of a message
[Ref. 1]:

event Preparemsg() = diamond;
event Sendmsg(src, seq) = plus;
event Recvmsg(src, seq) = box;

The arguments src and seq are user-specified attributes that identify the sender and
sequence number of the message sent and received. There are no hard-coded limits on
the number of such attributes that an event type may have, however, in the original
design of Graze these attribute values are restricted to the integer type. The tokens
after the ‘=’ are directives to the Graze visualization programs; in this case they

specify the graphical symbol for depicting the respective event type.

28

A user can associate two related events by specifying an interval definition.
An interval is bounded by a désignated start and end event type. For example, the

following specifies the interval between Preparemsg and Sendmsg events:
interval Write [p: Preparemsg -> s:Sendmsg] = line;

In the Write interval defined above, the syntax p:Preparemsg — s:Sendmsg tells
Graze that after it finds each Preparemsg event it should find the next Sendmsg in
the same thread. Each métching pair of Preparemsg and Sendmsg events make up
an instance of interval Write.

In addition to the above interval specification, Graze provides another way of
specifying the bounding condition between two events. Unlike the previous definition
of the Write interval, this bounding condition does not require that the start and end

events occur in the same thread. Such an interval specification is given below:
interval Transit [s:Sendmsg -> r:Recvmsg] Match = line;

The keyword Match tells Graze to create instances of interval Transit by matching
all attribute values of the start and end events,A except the timestamp and owner
of that event (thread identifier). In this case, the bounding condition is equivalent
to s.src==r.src && s.seq==r.seq. This type of interval specification is used for
describing related events occurring in different threads. For example, in the message
passing application, messages are typicé,lly transmitted by one thread and received
by another thread within the same application. Therefore, using the Match interval
specification is more appropriate.

Given an interval specification, Graze allows for either forward or backward

searching of ending events. For example, in the following interval specification:
interval BackTransit [r:Recvmsg <- s:Sendmsg] Match = line;

The left arrow symbol tells Graze to search backward in time from the point of a

Recvmsg event instance until a corresponding Sendmsg event with matching attribute

29

values is found. If a matching event is found, then the Graze visualization programs
marks this pair as an intérval. These programs then move forward to the next starting
event and repeat the backward search for a matching event, until all intervals meeting
the specification are found. ' |

As discussed in the next two sections, in addition to the specification language,
Graze consists of a Data Collection Facility and a number of visualization toolkits.
The specification language described in this section is used by both of these compo-
nents, although some of the language is ignored by the Data Collection Facility. For
example, interval specifications and event shapes are ignored by the Data Collection

Facility because they are irrelevant during the run-time of the job being executed.

2. Data Collection Facility
Using the specification provided by the user, the Graze framework automati-
cally generates a custom data collection facility for an application [Ref. 1]. A Graze
utility program builder (written using lex aﬁd yacc tools) parses the specification
and generates a logging function for each event type. The function name is simply the
event type name with the suffix “.Stamp” appended to it. If the event type has op-
tional attributes, then the function has formal parameters matching those attributes
[Ref. 1]. For example, the C++ function prototypes for the Sendmsg and Recvmsg
events discussed above are:
void Sendmsg_Stamp (int src, int seq) ;
void Recvmsg_Stamp (int src, int seq);
The actual code created by the builder program is system- and thread-library depen-
dent. The original version of Graze only generates logging functions for multi-threaded
program that use SUN Solaris thread library. The logging function writes event data
to a log file. A logging function, when invoked, performs the following actions: (1)
determines the thread from which it is being called; (2) finds the open file descriptor
for the log file associated with the calling thread; (3) invokes a system-dependent tim-

ing function to obtain a timestamp; (4) writes the event type, timestamp and actual

30

parameter values to the output file. To minimize the overhead associated with the
data logging, Graze implements an internal buffer for caching the event data. When
the buffer is full, the data is written to the output file. This technique minimizes the
number of writes performed.

To instrument an application, the programmer annotates the code using event

notation. An example of event notation is:
Sendmsg(self, SequenceNumber) ;

A Graze specification language preprocessor should replace such lines with the call to

the corresponding function, which, in this case is: !

void Sendmsg_Stamp(self, SequenceNumber);

After the application is executed, a set of log files is produced. Each log file contains
information about events collected from a single thread in the instrumented program.
The filename of the log file contains an integer that identifies the thread associated
with the given event stream.

The structure of the log file consists of a header record, followed by a stream
of event records. The integer value -1 is used as a sentinel to indicate the end of the
log file. The header record consists of a single precision (4 byte) integer (0x12345670)
- and a double precision (8 byte) integer (0x123456789abcdef0). Graze visualization
programs (nibble and gorge) read the header record to verify that input files are
valid Graze log files and to determine the byte ordering (endianess) of the data. Each
event record consists of an event type identifier, timestamp, and a list of integer values
corresponding to the user specified event attributes, if any. All values in the log files
are either single of double precision integers. The following layout shows the structure

of the log file:

I Currently, the programmer must insert calls to the event logging functions, but it would be easy
to modify the front-end of GNU compilers to perform this replacement.

31

header record:
integer (4 byte)
double precision integer (8 byte)

event records:
event type identifier (integer: 4 byte)
time stamp (double precision integer: 8 byte)
optional program state information
{ integer, integer, ... }
event type identifier (integer: 4 byte)
time stamp (double precision integer: 8 byte)
optional program state information
{ integer, integer, ... }

end marker: -1

The event type identifier is simply a sequential integer value, starting at 0 that cor-
responds to the list of events given in the user specification. | Graze uses this integer
value to tag the event record in the log file rather than using the actual string name
for both space efficiency and to minimize conversion problems caused by executing
on one platform and displaying on aﬂother. The resolution of the timestamp depends
on the operating system and hardware. On the Solaris system, a system call, geth-
rtime(), returns the current wall clock time. This value is expressed as nanoseconds
since some arbitrary time in the past; it is not related to user CPU time or system

CPU time as returned by other system calls such as rusage().

3. Visualization Tools

Graze provides two tools for generic data visualization: gorge and nibble,
that can be used once the performance data has been collected. Gorge displéys the
collected data with wall clock time increasing along the x-axis as shown in Figure
2. Nibble allows the user to graph generalized functions of statistical information
pertaining to specific events and intervals as shown in Figure 3. Both visualization
tools perform the following processing on the raw data: (1) they combine all of the

data from the log files into a single event stream in memory; (2) they sort the event

32

Pan Forward | ‘Pan Backward | Quit:{

Figure 2. Gorge can be used to display the interaction between threads in a message
passing application. For this example, event data from a total of 12 threads are
shown, with event data from thread 0 plotted at the top of the graph and event data
from thread 11 plotted at the bottom of the graph. The connecting lines between
threads indicate the previously defined Transit interval. Time increases along the
X-axis.
stream by time; and (3) they normalize the timestamp values so the first event in the
event stream has the value of 0. Once the data have been preprocessed in this way,
the visualization tools generate interval instances from the event stream by applying
the matching conditions as defined in the user specifications.

As shown in Figure 2, the gorge tool displays data using a time-space graph,
where the horizontal axis is the normalized time and the vertical axis represent data

from each threads. The user can control the amount of information displayed by

zooming in or out on the graph, and by selecting particular event, interval, and

33

Figure 3. Nibble graphing the number of Sendmsg and Recvmsg events as a function
of time in a message passing application. Time increases along the x-axis.

thread combinations [Ref. 1]. The gorge tool can provide a visual representation
of the interaction between threads (Figure 2) by displaying intervals as a group of
inter-connected lines.

As shdwn in Figure 3, the nibble tool is a generic statistical graphing tool for
plotting data versus time. The types of data that can be graphed include quantities
such as the total number of occurrences of an event or interval, a histogram of an
event’s state attributes, band the average elapsed time of an interval (Figure 3). The
nibble tool provides mathematical operators that can be applied to the event or
interval data to calculate new statistical data types on the fly for display. For example,

graphs can be added, subtracted, multiplied, divided, and smoothed (Figure 4).

34

endmsg 1 Count

‘Type | Owner| Metric

Figure 4. Nibble showing the number of Sendmsg and Recvmsg events in thread 0 and
-1, and the differences (the lower line graph) between the number of messages received
by thread 1 and number of messages sent from thread 0. Time increases along the
X-axis.

4. Summary

In this chapter, we describe the three components of Graze: the specification
language, the Data Collection Facility, and the visualization tools. The specification
language lets the user defines event and interval types that are of interest for a
given application. The specification defined by user is used to drive Data Collection
Facility and visualization tools. In particular, the event specifications are automat-
ically translated into data logging functions by the Data Collection Facility. The
programmer then annotates the application with the event point by inserting data

logging functions at the appropriate locations in the program. The data collected

35

from running the instrumented program, along with intervals constructed from the
event data and the user-provided specification, can be plotted and analyzed by nibble

and gorge tools.

36

IV. GLIMPSE: GENERALIZING GRAZE
AND APPLYING IT TO MULTI-THREADED
JAVA PROGRAMS

This chapter describes the design and implementation issues faced when gener-
alizing Graze’s Data Collection Facility. In particular, it addresses those issues faced
when attempting to monitor multi-threaded Java programs (Appendix A).

The first section of this chapter provides an overview of the design issues en- '
countered when generalizing Graze to apply to Java programs. These issues include-
mapping Java threads to event logs, accessing a high-resolution timer from within
a Java pfogram, and generalization of the z’nte}*val definition. The next section de-
scribes event collection code generation, where Graze’s events are translated into
Java methods. The final section summarizes the design issues faced in implementing

Glimpse.

1. Design Considerations
As described in the previous chapter, Graze provides a utility program that
" reads the user’s specification and automatically generates C++ functions. The user
then manually inserts events into the application. At execution time, event informa-
tion is written to a log file. Glimpse provides similar capability for event information
collection to Java programs. The following design goals and constraints were consid-
ered when implementing the Glimpse data collection facility:

i) We want to re-use Graze visualization tools; this implies maintaining the
' same data file structure and log filename convention in order to be compatible with
the existing visualization programs. -

ii) The overhead incurred due to the data collection code should be kept. to a
minimum. The modifications to the monitored programs should consist of a method

call to initialize the data collection package, method calls to write out event data,

37

and a method call fo free up resources used by the data collection package prior to
program termination.

iii) To improve code modularity, the data logging methods, which depend on
the user specification and are called (referenced) directly by the application program,
should be placed in a separate module from the rest of the data collection package.
This separation has the advantage that if the types of events to be monitored are
changed, only the module containing data logging methods needs to be re—generated
and re-compiled.

Based on these criteria, we implemented a new front-end program,
builder_java and a new utility library, glimpse.jar. The builder_java program
parses the specification and generates a Java class that contains data logging meth-
ods. The glimpse.jar library contains utility functions such as those needed for
openiné the log files, writing to the log files, and obtaining timestamp information.
Several issues arose as we implemented the Glimpse data collection facility. The

issues, and approaches we adopted, are described in the following sections.

a. Thread Naming

Graze stores event data from each thread in a thread-specific log file.
To keep track of the log file that a data logging function is writing to, Graze uses the
thread identifier provided by the system. The value of the thread identifier, which
is of type integer, is obtained at runtime by calling a SUN Solaris thread library
function. Based on this integer number, Graze determines the appropriate log file
to which the event data is written. For every thread from which logging functions
are called, there is a corresponding log file with the name of “log.{thread id}”. This
naming scheme is also shared by Graze’s visualization tools, which expect data files
to have names such as log.2, yvhere log.2 contains event data for thread 2, and where
the log file for the first threaci must be log.0. |

This filename convention assumes that the system thread library uses a

sequential numbering scheme, starting at 0, to keep track of threads that are created

38

by the program. If also assumes that threads used by the application éxist for the
duration of the program execution. By default, the Java thread library uses a string
value such as “Thread-6” to represent a thread’s unique identifier. The initial value of
the integer in this string is system dependent. In some implementations of the JVM
this number starts at 1 (Win95, Sun Java version 1.1.5), and in others it starts with
4 or 5 (Silicon Graphics IRIX 6.2, Java version 1.1.6). Furthermore, many threads
in Java programs are short-lived. These are transient threads, created to perform a
specific task in the application program. Once that task is completed, the thread exits
the method it was created to execute and is garbage collected by the Java Virtual
Machine. Threads created to perform asynchronous input and output operations are
an example of short-lived threads.

Because threads in Java are inexpensive to create and destroy, an ap-
plication program can potentially use a large number of transient threads. After a
transient thread has exited, the Java thread library can re-use that same thread name
again for a newly created thread. Directly translating Graze code to Java could there-
fore result in event data from two different threads being saved to the same log file.
To resolve this thread names issue in a way that is consistent with Graze’s current
log filename convention so the existing visualization tools can read the data without
modification, we designed and implemented a mechanism to associate each unique
Java thread with its own log file.

One possible solution we considered was to require the monitored pro-
gram to explicitly identify each thread that it creates with a unique integer, starting
at 0. This approach will certainly prevent two threads from having the same name
and thus saving event data to the same file. However it would mean calling the set-
Name(int id_value) method (from the Java Thread Library) every time a thread
is creatéd in the application. This approach would likely add additional code te the
monitored program as most programs do not explicit set the thread name but rather

let it default. Additionally, this solution shifts the task of creating and managing the

39

unique thread name to the programmer. Therefore, this solution would make using
the Glimpse Data Collection Facility.unnecessarily tedious.

The approach we eventually adopted was to provide a mechanism for
mapping the Java threads to unique log files that is transparent to the user (See
Figure 5). The thread name to log file mapping is implemented using two utility
classes: ThreadData and ThreadPool. The ThreadPool object maintains a pool of
ThreadData objects. The ThreadData object contains various thread-specific infor-
mation such as the actual name of the thread and the associated log filename. It also
contains methods for initializing the log file, writing data, and closing the log file. _
With this solution, each time that an event logging method is invoked, that method
sends a request to the ThreadPool objeqt. The ThreadPool object returns a refer-
ence to the ThreadData object assigned to the thread that invoked the event logging
method.. If the ThreadData object for the calling thread is not found, then a new
ThreadData object is created and added to the pcol, and the reference to that newly
created object is returned. The event logging method can then invoke the output
. methods of the ThreadData object to write out the corresponding timestamp and the
_user-defined event attributes to the appropriate log file. Any future write requests by
the same thread will result in the ThreadPool returning a reference to the designated
ThreadData object.

To en.sure that every ThreadData object is assigned to a different log
file, the ThreadData class maintains a global integer counter that is shared by all
objects of this class. This counter is initially set to zero, and its value is incremented
by one when a new ThreadData object is created. To ensure thread-safe behavior,
the action of obtaining and incrementing this counter value by a thread is mutually
exclusive from other threads that perform the same action. This mapping scheme
isolates the thread name used by the Java program from the actual log filename, and

preserves the original log filename convention.

40

4 Application Program A
(Threads)

9 |
% % § % % <ThreadPool>:

Map event logging

I I requests from threads

to ThreadData objects
/ ThreadPool {)

(HeshTable) '
ThreadDats ThreadDeta
| ThreadData [ThreadDatal| |

| _J
j 1 | <ThreadData>:
v \ Write thread
Logll Logdi Logd| Logll gpecific data

[RS_ty

to log file

Figure 5. Glimpse’s Java utility classes for mapping threads to log files.

41

To prevent saving event data from two different threads to the same
file, as in the cases of short-lived threads with duplicate thread names, the only
action required by the application is for it to notify the ThreadPool object when
a transient thread is terminated. This notification is accomplished through the
closeThreadData() method that is executed immediately before a thread termi-
nates. This method removes the corresponding ThreadData object from the pool.
Then, when another thread with the same name appears, the ThreadPool object will

create a new ThreadData object and assign it a different log filename. '

b. High Resolution Timer

The Java core package provides a timing routine currentTimeMillis ()
in the java.lang.System class. This method returns the time, in milliseconds, be-
tween the current time and the standard base time known as “the epoch,” 00:00:00
GMT on January 1, 1970. For performance monitoring with Graze, we need to record
the real time at which events occur during the program execution. For some appli-
cations, millisecond resolution of the standard Java timing routine is too coarse. We
~ investigated other alternatives for imﬁlementing a high resolution timer. One package
we looked at is the PortableTimer from the PTOOLS working group [Ref. 16]. The
PortableTimer specifies a set of timing functions that vendors should provide on their
respective systems to facilitate performance measurement, and a sample implementa-
tion of the specification for several of UNIX platforms. The sample implementations
use the standard UNIX functions to obtain wall clock, user and system time. Unfor-
tunately, implementations of this specification are not yet available for our platforms.

Consequently we investigated building a custom timer. On the platfbrm

(Silicon Graphics R10000 architecture) where we did most of the development and

1We note that in the current implementation of Glimpse, that the user must explicitly call
closeThreadData(). A commercial version of Graze could incorporate this call into the Garbage
Collector. Another possible solution would be for the Java Thread API to provide a way to register a
function that is invoked when a given thread exits. The ThreadData ob ject would then automatically
register a closeThreadData() method, and thus eliminates the need for the user to explicitly call
this method.

42

code testing, a high resolution timing function is supported via a free-running 64-bits
hardware counter. To use this hardware counter for performance timing, we wrote a
custom timer that maps the location of the hardware counter to an address in the
user process space. The value of the hardware counter can then be obtained by simply
reading the value stored at that address. Depending on the particular version of the
R10000 architecture, the hardware counter has a resolution (the elapsed time betweeri

rticks) between 21 and 800 nanoseconds. This resolution value can be dynamicallly
determined by querying the hardware at run time.

To access this custom timer (which is implemented in the C langﬁage)
from a Java program, we use the Java Native Interface (JNI) [Ref. 17). JNI provides
a standafd mechanism for a Java program to access functions in machine binary code.
The basic steps of using JNI are: (1) write a Java class that declares the C functions,
with the appropriate return types and calling arguments and a keyword ‘native’ before
the method name; (2) use the Java utility tool javah, to translate these Java methods
to the equivalent C-language function prototypes and store them in a header file; (3)
provide the implementation (in C or C4++4-) of these functions as declared in the header
file; and (4) create a dynamic shared library of these functions, i.e., the .dll library in
the Windows NT environment or .so library in the UNIX environment. For example,

the high-resolution timer used in our tests was implemented as follows:

final public class SystemTimer

{

/* Name of native function (implemented in the C-lang) that
returns time in nanosecond. The implementation of the
function gethrtime_ns() must be provided in a dynamic
shared library. In this example this library is called
libsgitimer.so . */

public static native long gethrtime_ns();

/* Static Initializer: Load the dynamic shared library. */

static { A
System.loadLibrary("sgitimer");

43

}
/* SystemTimer method that returns real time in nanosecond.
It calls the native function gethrtime_ns(). =/
public static long gettime_ns()
{

return gethrtime_ns();

}

The keyword native before the gethrtime_ns() method declaration tells the JVM
that the actual implementation of this method in not in Java bytecodes, but ma-
chine binary codes. When the SystemTimer object is initialized, the JVM executes
System.loadLibrary("libname") to load the dynamic shared library containing the
high-resolution timer functions. The method SystemTimer.gettime_ns() simply

calls the equivalent native function to obtain the real time in nanoseconds.

c. Generalization of the Interval Definition

We recall from the previous discussion of Graze iﬁ the last chapter that
an interval is determined by two bounding events, and by the matching criteria, if
specified, between the start andA end events. The two criteria are to require that both
events occured on the same thread, or to match all event attributes (except for the

thread identifier and timestamps) of the two bounding events. For example:

event Sendmsg(src, seq) = plus;

event Recvmsg(src, seq) = box;

interval Transitl [s:Sendmsg -> r:Recvmsg] = line;
interval Transit2 [s:Sendmsg -> r:Recvmsg] Match = line;

Interval Transit1 requires that both Sendmsg and Recvmsg events occur in the same
thread; interval Transit2 requires that (src and seq) values are the same. We would
like to generalize the interval definition so that it allows specification for partial match-
ing of attribute values, and Boolean relationships between the event’s attributes. This

new syntax would support the following types of interval definitions:

44

interval Transit3 [s:Sendmsg -> r:Recvmsg]
{ s.src==r.src } = line;

interval Transit4 [s:Sendmsg -> r:Recvmsg] = line;
{ s.src==r.src && s.seq >= r.seq } = line;

interval Transit5 [s:Sendmsg -> r:Recvmsg] = line;
{ s.src!=r.src && s.seq < r.seq } = line;

Interval Transit3 requires only the src variable of Sendmsg and Recvmsg to match.
Interval Transité4 requires the src value to match and that seq value of Sendmsg
event is greater than or equal to the seq value of Recvmsg event. Under this expanded

syntax (see Appendix B), the operators for comparing the attribute values are:
>, >===<=,<,!= (IV.1)

To support this more general form of interval specification, additional production rules
are added to the lexical parser of the glimpse, and the internal data structure used
by the semantic analyzer is expanded to include the additional clauses for evaluating

the attribute data between the two events.

2. Event Collection Code Generation

We created a front-end program, buildef,java, to automatically create ap-
plication specific Java class that contains data logging methods. For each event type -
defined in the user specification, builder_java creates a corresponding static method.

As an example we consider the specification for message passing events:
event Sendmsg(src, seq)

and

| event Recvmsg(src, seq)

The Java class, and its methods, created from the above specification are:

45

final public class GzEvent

{
static ThreadPool pool;
final static boolean DISABLE_GLIMPSE=false;
final static boolean NATIVE_TIMER=false;
static SystemTimer st;

static public void init()
{

if (DISABLE_GLIMPSE) return;

pool=new ThreadPool();

if (NATIVE_TIMER==true) st=new SystemTimer();
b
static public void init(String data_dir)
{

if (DISABLE_GLIMPSE) return;

pool=new ThreadPool(data_dir);

if (NATIVE_TIMER==true) st=new SystemTimer();
3 ‘ ;
static public void close()
{

if (DISABLE_GLIMPSE) return;

pool.closeAll();
} -
static public long gettime()
{

long ts;

if (NATIVE_TIMER)

ts=st.gethrtime_ms();

else :
ts=System.currentTimeMillis ()*1000;
return ts; :
b
static public void Recvmsg(int src, int seq)
{

if (DISABLE_GLIMPSE) return;

long ts=GzEvent.gettime();

ThreadData handle= (ThreadData) pool.getThreadSpecific();
handle.putout(0);

handle.puttime(ts);

handle.putout (src);

handle.putout(seq) ;

46

return;

}

static public void Sendmsg(int src, int seq)

{
if (DISABLE_GLIMPSE) return;

long ts=GzEvent.gettime();

ThreadData handle= (ThreadData) pool.getThreadSpecific();
handle.putout (1) ;

handle.puttime (ts);

handle.putout (src);

handle.putout(seq);

return,

}

static public void closeThreadData()

{
if (DISABLE_GLIMPSE) return;
pool.closeThreadData(Thread.currentThread());

+

}

The name of the generated event logging class defaults to GzEvent, although
the user can specify a different name by passing an optional argument to the
builder_Java program. Calls to the SystemTimer methods to get timestamp val-
ues, and to write out the values of variables src and seq are automatically in-
serted into the body of the event logging methods, GzEvent .Recvmsg(src,seq) and
GzEvent .Sendmsg(src,seq). A flag, NATIVE_TIMER, can be set to allow the logging
methods to use either the standard Java timing method, or the native timing func-
tion, if one is provided via the JNI mechanism as discussed in the previous section.
To instrument the application, the programmer edits the source code and annotates it
using GzEvent.init(), GzEvent.Recvmsg(), and GzEvent.Sendmsg(). 2' Two ver-
sions of the GzEvent .init () methods are provided-one takes an optional argument
to specify the directory to which the log files are to be written. If not speéiﬁed, the

current working directory of the monitored program is used. As stated earlier, the

2In the current implementation the programmer must also manually' insert a call to the
GzEvent.close() method. See appendix C on using Java Finalize facility.

47

1) Code Generation: builder java creates
GzEvent java from the Event specification

2) Edit and Compile: Add Event logging methods
to the application and compile with utilty classes. |

S

3) Execution: JVM Iinks in glimpse jar and
 native timing functions and executes the [
program to collect event data

Figure 6. Steps for collecting event data: 1) code generation, 2) compiling the moni-
tored program, 3) loading dynamic library during execution. Arrow indicates depen-
dency at the various stages. '

GzEvent.closeThreadData() method notifies the ThreadPool object that the calling
thread is about to éxit and that the log file associated with the exiting thead should
be closed. This call is bnly needed to handle tranisent threads; it prevenﬁs data from
two different threads being written to the same log file. Finally, GzEvent.close()
terminates event logging and closes all log files. A flag, DISABLE_GLIMPSE, allows the
user to turn off the data logging if the application no longer requires performance

monitoring.

48

To compile the monitored program, both the GzEvent.java file and
glimpse. jar utility library need to be supplied to the Java compiler (See Figure 6).
The glimpse. jar library and dynamic shared library for the native high-resolution

timer are then loaded in by the JVM during the execution of the monitored program.

3. Summary

In this chapter, we described the porting issues encountered while adapting
Graze to monitor multi-threaded Java programs, and the approaches we used to
" resolve these issues. In particular, the issues with mapping application threads to
event log filename, obtaining high-resolution timestamp information at run-time, and
generalizing the interval definition. In the last section, we descibed how Glimpse
translates user-defined event specification into the data logging code that is used to

instrument the application of interest.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

V. EXPERIENCES USING GLIMPSE WITH
JAVA

In this chapter we describe the result from testing Glimpse with a multi-
threaded Java program. By visualizing the event data collected from execution of
the test program and intervals derived from the event data, and by relating these
events and intervals to the actions performed by a test program, we demonstrate that
- Glimpse is working properly.

The first section of this chapter describes the structure of a Java example
program and the expected interactions between the various threads in this application.
The next section describes the event and interval specifications that were used to
collect the runtime data, and to visualize that data. Section three describes the data
gathered from running thg test program with two different inputs. By relating the
events and intervals to the expected behaviors of the application, we demonstrated
the correctness of the test program and Glimpse’s Data Collection Facility. In the
final section, we summarize the results from testing Glimpse with a multi-threaded

Java program.

1. Description of the StopLight Program

To evaluate the Glimpse software, we applied it to a Java program called
“StopLight” that simulates traffic flow at an intersection. This program was origi-
nally written to show how to use Java threads in.a concurrent program. It uses car,
intersection, and timer objects to model the flows through the intersection. Each
car object is assigned a direction of movement (North-South or East-West) and a
departure time. The departure time determines when a car will arrive at the inter-
section. The timer object controls the traffic lights of the intersection objAect. Each
timer object is initialized with a timeslice vélue. When that timeslice value expires,
the timer object toggles the traffic lights so that the flow direction at the intersec-

tion alternates between North-South and East-West. Two pair of timers are used to

51

control the traffic light at the intersection; their function will be described in next
paragraph. Cars traveling in different directions can arrive randomly at the inter-
section, and more than one car can queue up at the intersection while waiting for
the light to change. In this program, a car is not allowed to change direction once
it starts running; furthermore there is only one intersection through which all cars
must travel.

An intersection should maximize the number of cars passing through, and
minimize the time that a car is waiting at the intersection. For example, the green
light should stay on longer for the direction with a heavy traffic flow, and should turn .
red quickly if no more cars are passing through. To implement this behavior in the -
StopLight program, a timer called LargeTimer (that is a timer with a longer expiration
value) and another timer called SmallTimer are used concurrently to control the traffic
light. Both timers are started when the intersection object is first initialized. Each
time a car passes through the intersection without stopping, the currently active
SmallerTimer is stopped and a new one is started. Stopping and restarting this
. SmallTimer has the effect of prolonging the green light for that given direction. Thus,
.if a group of cars, traveling along the same direction, arrives at the intersection at close
intervals, then the traffic light for that direction will tend to stay green. However, if
there is a long gap between cars travelling along the same direction arriving at the
intersection, then the SmallTimer will most likely expire before the next car can reach
the intersection. When the SmallTimer expires it forces the traffic lights to change,
thus allowing the cars traveling along the other direction to proceed. This control
logic ensures that cars Wé,iting at the intersection will not wait longer than necessary
(not greater than the expiration value of the SmallTimer) if the cross traffic is very
sparse.

The LargeTimer ensures that both directions are given their fair share of green
light. For example, consider the case where there is a caravan of cars traveling along

the North-South direction, while only a few cars are traveling along the East-West

52

direction. If the gaps between the vehicles in the caravan are very short and there
were no LargeTimer object, it is likely then that North-South bound cars could keep
extending the traffic light in their favor, and the East-West bound cars would not be
able to pfoceed until all the North-South bound cars were through. The LargeTimer
prevents this unfair situation from occurring. Regardless of the number of times that
a SmallTimer is restarted, the LargeTimer will eventually expire and force the traffic
light to switch. This design guarantees that the maﬁmum waiting time of any cars
- will not exceed some threshold value, regardless of the uneven traffic distribution
between the two flow directions.

In the implementation of the StopLight program, each car and timer object
executes as a separate Java thread. Timer threads are assigned higher priority than
car threads. The higher priority associated with the timer thread allows it to interrupt
other threads in order to change the traffic light at the intersection. The critical
sections of this program are associated with changing the traffic light variable of the
intersection object. To ensure the synchronized access to the traffic light variable,
the intersection object acts as the monitor to the critical sections. (See Appendix A

for a discussion on the Java monitor object and synchronization.)

2. Defining Events and Intervals For the StopLight
Program

To evaluate the Gli’mpse package with the Stoplight program, we define the
following events that are relevant to the car, timer and the intersection objects. For
the car objects, we defined three types of events: StartMotor, ArriveIntersection
and LeaveIntersection. These events correspond to 1) when the car is started, 2)
‘when it reaches the intersection, and 3) when the car has crossed the intersection. In
term of actual location in the StopLight program code, these events correspond to
1) when the car object enters its run() method, 2) when the car object invokes the
enter () method of the intersection object, and 3) when the car object returns from

the enter() method of the intersection object.

93

For the intersection obj.ect we defined the Stop, Go, and NoWait events. The
Stop event occurs when a car reaching the intersection has to wait for the light to
change. The Go event occurs when a car waiting at the intersection can proceed. The
NoWait event occurs when the traffic light direction and car direction are the same,
in that case the car just proceeds through the intersection without stopping. The
following code shows the locations of event collection points in the Intersection

object:

public class Intersection {
public int traffic_light ;
public LargeTimer MajorTimer;
public SmallTimer MinorTimer;

public synchronized void enter(Car cx, int car_direction)
{
/* car going at NORTH or SOUTH direction and so is the current
traffic light for the intersection. */
if (traffic_light == NSDirection &%
(car_direction == NORTH || car_direction == SOUTH))

{
GzEvent.NoWait (traffic_light);
MinorTimer.stop();
MinorTimer = new SmallTimer(200,this);
}

/* car going at EAST or WEST direction and so is the current
traffic light for the intersection. */
else if (traffic_light == EWDirection &&

(car_direction == EAST || car_direction == WEST))

{ .
GzEvent.NoWait (traffic_light);
MinorTimer.stop(); .

MinorTimer = new SmallTimer(200,this);

}

/* car direction and traffic light direction does not match,
car must wait until the light changed. */

else {
try {
GzEvent.Stop(traffic_light);
wait();

94

GzEvent.Go (traffic_light);
} catch (Exception e) {}

}

In the enter () method of the Intersection object, the first two ‘if’ statement blocks
handle the cases where the car direction matches the traffic light direction. In these
two if statement blocks, the old SmallTimer is killed and a new SmallTimer is
~ started as per discussion in section one, and execution continues without blocking-. In
the third if statement block, the execution of the enter () method is blocked on the
call to the wait() method. This car will rémain blocked until another thread, i.e.,
the timer thread, acts on the traffic_light variable and invokes the notifyall()
method. (See Appendix A on the wait() and notifyall() mechanism for synchro-
nizing access to shared variables from multiple threads.)

For the timer objects, we define the LightChanged event. This event occurs
when the timer acts on the traffic light variable of the Intersection object. We also
defined the SmallTimer and LargeTimer events to indicate when a timer is instanti-
ated. The following code shows the locations where we place the LightChanged event
in the LargeTimer object:
public class LargeTimer extends Thread {

private int timeslice;
private Intersection in;

public void run()
{

try

{

/* Sleeping until timeslice expired */

sleep(timeslice);

/* Enter critical section and switch the traffic light
variable of the Intersection object. Notify any other
threads waiting on the Intersection object that
traffic light has changed. */

synchronized (in)

h%)

in.MinorTimer.stop();

if (in.traffic_light==NSDirection) {
in.traffic_light = EWDirection;
GzEvent .LightChanged (EWDirection) ;
in.notifyAll();

}

else

{ .
in.traffic_light = NSDirection ;
GzEvent.LightChanged (NSDirection);
in.notifyAl11();

}

/* Reset all timers prior to exiting. */
in.Majo;'Timer = new LargeTimer(800,in);
in.MinorTimer = new SmallTimer(200,in);
GzEvent.closeThreadData() ;
}
} catch (InterruptedException e) { }
}

Upon the expiration of the timeslice, the timer (i) toggles the traffic light variable of
the Intersection object, (ii) notifies any other threads waiting for the traffic light to
change, and (iii) resets the Large and Small timers controlling the Intersection object
before exiting. .

"The event specification for the StopLight program is shown below.. Additional
attribute information is recorded for some of the events. For examples, for events
associated with the car objects, the direction of car movement is recorded; for events
associated with the intersection and timer objects, the direction of the traffic light is

saved to the log files.

graze msgs

event Stop(traffic_light_direction) = symbol(plus);
event Go(traffic_light_direction) = symbol(diamond);
event NoWait(traffic_light_direction) = symbol(x);
event SmallTimer(traffic_light_direction) = symbol(x);

36

event LargeTimer(traffic_light_direction) = symbol(plus);

event LightChanged(traffic_light_direction) = symbol(diamond) ;
event Arrivelntersection(car_direction) = symbol(x) ;

event LeaveIntersection(car_direction) = symbol(plus) ;

event StartMotor = symbol(box);

end msgs.
From the event definitions, we specify the following intervals to be constructed

and visualized:

graze msgs

interval StartMotorArrInt [StartMotor, Arrivelntersection]=rectangle;
interval ArrivelLeave [Arrivelntersection,Leavelntersection]=rectangle;
interval ArriveAndStop [Arrivelntersection, Stopl=rectangle;

interval StopAndGo [Stop, Gol=rectangle; ‘
interval GoAndLeaveInt [Go, LeaveIntersection] = rectangle;
interval STimerLtChanged [SmallTimer, LightChanged] = rectangle;

interval LTimerLtChanged [LargeTimer, LightChanged] = rectangle;
interval LtChangedAndGo [LightChanged <- Gol Match = line;
= line;

interval NoWaitSmallTimer [NoWait,SmallTimer] Match
end msgs.

StartMotorArrInt shows the interval between when a car starts and when it reaches
the intersection. The ArriveLeave interval depicts cars that arrive at the inter-
section and go through it without stopping, whereas ArriveAndStop interval shows
cars that arrive at the intersection and wait for the light to changed. The inter-
val StopAndGo shows how long a car spends waiting for the light to change. The
STimerLtChanged and LTimerLtChanged depict the intervals between when the timer

- is started and when it actually acts to change the traffic light. The LtChangedAndGo

and NoWaitSmallTimer intervals associate events occurring on different threads.

3. Visualizing the Result _
We used two different traffic patterns to test the working of Glimpse with
the StopLight program. The traffic patterns are configured by setting the departure

57

time and the direction of the cars. In test case one, cars are initialized with random
departure time and different directions. In test case two, a stream of cars traveling
along the same direction is started at faiﬂy close intervals. This steady stream of
traffic flow is interspersed with a few cars traveling along the other direction. From
the previous diséussion on the StopLight program, we would expect that in test
case one, where cars arrive randomly at the intersection while traveling at different
direction, it is more likely that we should see the SmallTimer acts to switch the
traffic light. In test case two, a steady flow of cars traveling along the same direction
arriving at the intersection will tend to prevent the SmallTimer from changing the
traffic light, but will favor‘the LargeTimer.

We ran the StopLight program with the two test cases multiple times on a
SGI workstation (with the Java SDK 1.1.6 environment). The results vary slightly
from run to run, but the general pattern is consistent between different runs. The

following plots show the representative results.

a. Ezperiment One

In Figure 7, the interval StartMotorArrint are plotted using the gorge
visualization tool. The symbol x at the right edge of the horizontal bar indicates when
a car arrives at the intersection. Because of the different departure times‘assigned to
the cars, car objects instantiated later in the main program can reach the intersection
earlier. For example, car 4‘reaches the intersection before car 3. |

In Figure 8, we added the StopAndGo interval to the plot. The
StopAndGo interval depicts a car that must stop at the intersection for the light
to change. From the plot, we see that car 1, 3, 5, 9, 10, 12 stopped at intersection be-
fore they were allowed to continue through. Next, we add the events associated Wifh
timer objects to the plot. The events LargeTimer and SmallTimer are depicted by the
symbol + and the symbol x respectively. The first occurrence of a pair of LargeTimer
and SmallTimer are associated with the instantiation of the Intersection object.

These two events are shown at top of the plot (Figure 9) before the horizontal bars

38

Refresh Events Intervals Threads Configure + - PanForward PanBackward Quit

0.002307

Figure 7. Plot of StartMotorArrInt intervals for experiment one. The horizontal
bar indicates the interval between when a car is started and when it reaches the
intersection. The time scale increases to the right. There are 13 cars in this test case;

they are displayed from top to bottom.

99

Refresh Events Intervals Threads Configure + - PanForward PanBackward Quit

0.002307

Figure 8. Plots of the StartMotorArrInt and StopAndGo intervals for experiment
one. The StopAndGo intervals are bound by + and diamond symbols. Car 1, 3, 5, 9,
10, 12 have StopAndGo interval.

60

associated with car objects. Subsequently, we saw more instances of the SmallTimer
event further down on the plot. The occurrences of these SmallTimer events are
made clear in the next figure. -

In Figure 10, we added the interval NoWaitSmallTimer to the plot.
The NoWaitSmallTimer interval is represented by the vertical line that connects the
right edge of the StartMotorArrInt interval in a car thread to the symbol x denot-
ing the instantiation of a new SmallTimer object in a timer thread. There are 7.
NoWaitSmallTimer intervals originating from car 2, 4, 6, 7, 8, 11, and 13; they cor-
respond to cars that did not have to wait at the intersection for the light to change.
Recéll from the discussion of the StopLight program, cars that go through intersection
without stopping are extending the duration of the traffic light in their direction ny
resetting the controlling timers. The interval NoWaitSmallTimer corresponds to this
action, and the gorge provides a visual representation of this program behavior.

In Figure 11, We add StimerLtChanged and LtChangedAndGo inter-
vals to the plot. The StimerLtChangedirepresents the interval between when a small
timer is created and when its timeslice value has expired, at which time the small
timer changes the traffic light direction. The StimerLtChanged interval is depicted
as horizontal bars bounded by the x and diamond symbols. These StimerLtChanged
intervals are shown below the car threads in Figure 11, except for the first instance
of StimerLtChanged interval which is created by the Intersection object. From
the plot we see that not every small timer thread contains a StimerLtChanged in-
terval. This is because some small timers are preempted by cars going through the
intersection, as discussed in the previous paragraph. The LtChangedAndGo represents
the interval between when a car object stops at an intersection and when it starts
moving again as the result of the expiring timer changing the traffic light direction.
The LtChangedAndGo is depicted as vertical line connecting the right edge of the
horizontal bars of the LtChangedAndGo intervals to the right edge of the StopAndGo

intervals in the car threads. As can be seen from Figure 11, LtChangedAndGo intervals

61

Refresh Events Intervals Threads Configure + - PanForward PanBackward Quit

0.002307

Figure 9. Plot of LargeTimer and SmallTimer events with StartMotorArrInt and
StopAndGo intervals in experiment one. The symbol + and symbol x depict when the
LargeTimer and SmallTimer objects are instantiated in the StopLight program. The
first pair of timers is created (shown at the top of the plot) when the Intersection
object is initialized, that is before any car objects are created.

62

o

Figure 10. NoWaitSmallTimer interval is represented by the vertical line connection
between the symbol x in the car thread and symbol x in the SmallTimer. There are
7 NoWaitSmallTimer intervals, originating from cars 2, 4, 6, 7, 8, 11, and 13. These
- intervals represent the new SmallTimer objects created by cars that did not have to
stop at the intersection.

63

Figure 11. Interval StimerLtChanged is shown as the horizontal bar (between sym-
bol x and symbol diamond) in timer threads. These intervals indicate the small
timers that change the traffic light as the result of its timeslice value expiring.
The interval LtChangedAndGo is shown as a vertical line from the right edge of the
StimerLtChanged interval of the timer thread to the right edge of the StopAndGo
interval of the car threads. These intervals represent the notification received by the
car threads when the traffic light is changed by the timer threads.

64

connects car 1, 3, 5, 9, 10, and 12 to StimerLtChanged interval. These are cars that
were waiting at the intersection for the light to change. The interactions between
the timer threads and car threads are consistent with the traffic distribution used in
this test case and the design of the StopLight prograin. The visualization of intervals
and events allow us to correlate the execution of the application program with the

semantics of the program code.

b. Ezxperiment Two

In this experiment, we execute the annotated test program using a
different traffic pattern. This traffic pattern consists of cars arriving at the intersection
at a constant interval, as shown by the StartMotorArrInt intervals in Figure 12. In
Figure 13, we added the StopAndGo interval to the plot. We see that cars 1, 5, 12,
and 13 must stop at the intersection before proceeding.

In the next Figure (Figure 13), the events associated with the creation
of SmallTimer and LargeTimer are shown. These events are associated with the car
that did not have to stop at intersection. The interval NoWaitSmallTimer in Figure
15 clearly shows the relationship of car threads creating the new timer threads.

The difference between experiment one and experiment two is that in
experiment two only one of the SmallTimer threads ever reaches expiration. For the
experiment two, there is a steady stream of cars going through the intersection, so
the exiting SmallTimer, except for the last one, is always being re-started. Recall
that from the discusa:;ion of the StopLight program, if cars repeatedly passing through
the intersection constantly extend the traffic light, at some point the LargeTimer will
act to change the traffic light. This is indeed what is shown by the LtimerLtChanged
interval in Figure 16. The LargeTimer expired and allowed car 5, which has been
waiting at the intersection, to proceed. When the LargeTimer expired, it created
a pair of SmaiiTimer and LargeTimer. The event SmallTimer and LargeTimer,
and the interval StimerLtChanged are shown at the bottom right of Figure 16. The

expiration of the last SmallTimer allows cars 12 and 13 to proceed. This is shown by

65

AN NS b R RN A
-
bd

e P e

S e SO

Figure 12. Plot of StartMotorArrInt intervals for experiment two. The horizontal
bar indicates the interval between when the car is started and when it reaches the
intersection. The time scale increases to the right. There are 13 cars in this test case;
they are displayed from top to bottom.

66

Figure 13. Plot of StartMotorArrInt and StopAndGo intervals for experiment two.
The StopAndGo intervals are bound by + and diamond symbols. Only car 1, 5, 12,
and 13 have a StopAndGo interval.

67

A Rk B T R
=
be

|

ik

Figure 14. Plot of LargeTimer and SmallTimer events with StartMotorArrInt and
StopAndGo intervals in experiment two. The symbol + and symbol x depict when the
LargeTimer and SmallTimer objects are instantiated in the StopLight program. The
first pair of timers is created (shown at the top of the plot) when the Intersection
object is initialized, before any car objects are created.

68

Figure 15. NoWaitSmallTimer interval is represented by the vertical line connection
between the symbol x in the car thread and symbol x in the SmallTimer. There are 9
NoWaitSmallTimer intervals, originating from car 2, 3, 4, 6, 7, 8, 9, 10 and 11. These
intervals represent the SmallTimer objects created by cars that did not have to stop
at the intersection. '

69

AL T vl

E3
51
e
£
il
iy
s
2
.
b

=
5

Figure 16. Interval LtimerLtChanged and StimerLtChanged are shown as the hori-
zontal bar (between symbol x and symbol diamond). The interval LtChangedAndGo
is shown as a vertical line from the right edge of the LtimerLtChanged or
StimerLtChanged interval in the timer thread to the right edge of the StopAndGo
interval in the car threads. These intervals represent the notification received by the
car threads when the traffic light is changed by the timer threads.

70

the interval LtimerLtChanged that connects the car threads and the last SmallTimer

thread.

4. Summary
' In this chapter, we described a multi-threaded Java program that was used to
demonstrate the working of the Glimpse Data Collection Facility. We then defined
the event and interval specifications that are used to describe the behavior of this
test program, in particular the interaction between threads in this application. By
funning the test program with two different inputs, we collected two experimental
data sets. Using the visualization tool gorge, we were able to verify that event data-

collected from the experiments are consistent with the behavior of the application.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

VI. APPLYING GLIMPSE TO
AUTOMATICALLY PARALLELIZED
FORTRAN PROGRAM

In this chapter, we describe our experiences porting Glimpse to monitor the
performance of automatically parallelized FORTRAN programs. The FORTRAN
programs that we expect Glimpse to be useful with are those that use lightweight
processes to implement concurrent execution on systems with multiple processors.
Although the FORTRAN parallel programming model and the language constructs
that FORTRAN uses -are quite different from the models and constructs in both
Java and C++, we found that the basic approach used Glimpse is applicable to
the performance analysis of parallel FORTRAN codes. In particular, the language-
independent concepts of events and intervals proved quite useful.

In section one, the OpenMP tooi for parallizing FORTRAN code is described.
In section two, the modifications we made to Glimpse’s Data Collection Facility to
work with automatically parallelized FORTRAN progra‘m's are discussed. In section
three, results from testing Glimpse with parallel FORTRAN programs are analyzed.
In particular we see that different work-load scheduling algorithms have a large im-
f)act on the execution time of parallel programs and how Glimpse can be useful in
understanding this impact. The test programs we used include a simple', loop-level
parallel code and an operational weather forecast application. We conclude in section
four by describing the experiences that we gained from modifying Glimpse to be used

with automatically parallelized FORTRAN code and actually using it.

1. Parallelizing Programs using OpenMP

OpenMP [Ref. 18] is a tool from SGI that can be used by FORTRAN and
C programmers to allow their code to take advantage of multiple processor environ-
ments. In many parallel programming approaches, such as those that use POSIX

threads or Message Passing Interface (MPI), programmers must explicitly structure

73

- the program by adding necessary function calls to the source code that handle syn-
chronization, data movement, and other communication between parallel execution
tasks. The OpenMP approach, on the other hand, relies on the compiler to han-
dle such details. To set up a program for concurrent execution, the programmer

- inserts directives for the sections of the code that can séfely be executed in parallel.
A primary target for these directives is the loop constructs. The OpenMP-enabled
compilers process the d_irectives and generate calls to library functions. These library

functions create lightweight processes at runtime and distribute loop iterations among

them. !

The following example (in FORTRAN) illustrates the use of multiprocess di-

rectives:
program mploop

integer maxlen
parameter (maxlen = 400)
real*8 a(maxlen), b(maxlen), c(maxlen)
integer len
len=maxlen
C
C$DOACROSS SHARE(a,b,c,len),LUCAL(i),MP_SCHEDTYPE=SIMPLE
C$& CHUNK=25
C
doi=1, len
a(i) = b(i) + c(i)
end do
stop
end

'In this thesis we use the term lightweight process as it is used by SGI. SGI’s definition is
slightly different from these definitions typically found in textbooks and papers. In their definition,
a lightweight process shares its address space with its parent process. In that respect, a lightweight
process is similar to a thread. However, their lightweight process has 2 characteristics: (1) it carries
a full set of the state information of a process, and (2) the dispatch of their lightweight processes is
done in the kernel space. On the Silicon Graphics systems, a lightweight process is created by the
sproc() system call.

74

The multiprocess directives are placed in the comment section of the code. They

begin with a ‘C’ in column one and a ‘$’ as the second character. The directives
may be followed by optional clauses. If the compiler has multiprocessing turned off,
these statements have no effect. This feature allows the identical source code'to be
~compiled for a single processor system, e.g., for debugging purposes, without the
multiprocess option. The example demonstrates the use of the DOACROSS directive.
This directive indicates‘ to the compiler to generate code that will execute multiple
iterations of a DO loop in parallel. The C$DDACROSS directive applies only to the next
executable statement that follows, which must be a DO loop. The SHARE and LOCAL
clauses specify lists of variables used within the ensuing parallel region. The LOCAL
clause Speciﬁes variables that are local to each parallel process. A variable is declared
as LOCAL if its value does not depend on any other iteration of the loop and its
value is used only within a single iteration (e.g., the loop-iteration variable i in this
example). The SHARE clause specifies variables that are shared across all parallel
processes. If a variable is declared as SHARE, all iterations of the loop use the same
copy of the variable. A variable is declared as SHARE if it is only read (not written
to) within the loop or if it is an array where each iteration of the loop uses a different
element of the array [Ref. 19)].

The MP_SCHEDTYPE and CHUNK clauses affect the way the compiler and run-
time environment schedule work among the participating parallel processes in a loop.
The default scheduling algorithm (e.g., SIMPLE) divides the iterations of the DO loop
equally among all participating tasks. Other MP_SCHEDTYPE options are DY-
NAMIC, INTERLEAVE, and GUIDED SELF-SCHEDULING. These clauses do not
affect the correctness of the loop, but can impact the performance of the critical loop.
The effect of different work scheduling algorithms will be described in section 3 of
this chapter. »

The advantage of the compiler-directed approach to automatically parallelizing

code is that it hides most of the low-level details associated with parallel program-

75

ming from the programmers. By adding a few simple directives and hints to the
parallel regions of the source code, one can potentially speed up the execution of the
application. Additionally, it is simple to change from one type of code partitioning to
another. As discussed in section 3 of this chapter the type of scheduling desired can
be application specific. Of course, performance bottlenecks will still occur for code
parallized by this technique; in particular, in the distribution of workload among the
participating tasks and in the interaction with the runtime environment. In the fol-
lowing section, we describe the modifications to Glimpse to allow it to monitor such

potential performance bottlenecks.

2. Adapting Glimpse to Monitor Multiprocessing FOR-
TRAN Code

Following the approach used for adapting Graze to the Java environment, the
FORTRAN version of Glimpse will use the event and interval specification (Appendix
B) and will provide the capability to translate event specifications into event logging
subroutines that can be called by the FORTRAN application. The design objectives
for the Java implementation (Chapter IV) were also considered in the FORTRAN
implementation, that is, (i) maintaining the log file structure and naming convention
for compatibility with existing visualization tools, (ii) keeping the number of function
calls needed to capture event data to a minimum, and (iii) separating the part of
data logging code that is dependent on the event specification from that which is
independent in order to improve modularity. '

Based on these considerations, we implemented a front-end program,
builder_fortran and a new utility library, glimpse_io.a. The builder_fortran
program parses the event specifications and generates FORTRAN subroutines. The
glimpse_io.a library contains utility functions, such as those needed for opening log
files, writing to log files, and obtaining timestamp information. The library maintains
a list of log file records at runtime, one for each process in the parallel FORTRAN

application. A log file record is a C language struct that contains information such

76

as the name of the log file and the file pointer to the log file, as well as a pointer to
an internal buffer in which to store the event data. During the execution of paral-
lel FORTRAN programs, the event logging subroutine looks up the appropriate log
file record assigned to the given execution process and writes the event data to that
buffer. When the event buffer is full, the library writes out the data to the appro-
priate log file. Unlike the Java programs where some threads might be short lived,
the participating processes in the‘ parallel FORTRAN code exists for the duration
of the program. 2 Consequently, the method for looking up the appropriate log file
record for a given process is straightforward. For example., for a FORTRAN program
running with 4 processes, the first process is associated with the element 0 of the log
file record array and data from that process are written to ‘log.0.’

The utility funétions in glimpse_io.a library are implemented in the
C language. To facilitate implementation of FORTRAN data logging subrou-
tines, the FORTRAN interface to the library is provided by the following func-
tions: GLIMPSE-INITIALIZE, GLIMPSE_CLOSE, LOG_EVENT, and LOG_EVENT_ATTR.
GLIMPSE_INITIALIZE function creates the necessary log file records and initializes
the log files. The GLIMPSE_CLOSE function flushes out any event data in the memory
buffer before closing the log files. The LOG_EVENT function writes out the event id and
its timestamp to the specified buffer and the LOG_EVENT_ATTR function writes out the

event attribute. Consider the following event.
event write_data(size)

The builder_fortran program generates the following FORTRAN subroutines:

2For example, on the Silicon Graphics systems, the main process creates a group of lightweight
processes at the start of the program. When the main thread of execution reaches a parallel region in
the code, i.e., the Do loop, these lightweight processes are unblocked and become active participants
in the execution of the Do loop. After leaving the parallel region, the lightweight processes become
blocked again until the main execution thread reaches another parallel region. The number of
lightweight process, a user controllable parameter, is set prior to the program execution. It cannot .
be changed once the program execution starts.

77

File: fgliﬁpse.f

Subroutine to intialize the glimpse io package

O O 0O 0 o0

subroutine glimpse_init ()
integer num_of_proc(1)
num_of_proc(1)=mp_numthreads ()
call GLIMPSE_INITIALIZE(num_of_proc)
return
end

Subroutine to close the glimpse io package

subroutine glimpse_terminate()
call GLIMPSE_CLOSE()

return

end

Subroutine to log event

subroutine write_data(size)
integer tid(1)
integer event_id(1)
integer event_attr(1l)
tid(1)=mp_my_threadnum()
event_id(1)=0
call LOG_EVENT(tid,event_id)
event_attr(1l)=size
call LOG_EVENT_ATTR(tid,size)
return
end

The FORTRAN subroutine, glimpse_init (), initializes the Data Collection
Facility by caﬂing the C-function GLIMPSE_INITIALIZE to create the necessary log
file records and initialize the log files. The function mp_numthreads() returns the
number of processes that will be used to execute the parallel FORTRAN code. This

number is passed to GLIMPSE_INITIALIZE during the initialization. The subroutine
glimpse_terminate calls the C-function GLIMPSE_CLOSE to flush out any event

78

data in the memory buffer to files and shutdown the Data Collection Facility. The

FORTRAN subroutine for logging the write_data event calls the utility functions
LOG_EVENT and LOG_EVENT_ATTR to record the event id, timestamps, and
event attribute information. The function mp_my_threadnum() is called inside the
event logging subroutine to identify the process in which each particular event occurs.

The mp_my_threadnum() and mp_numthreads() are functions in the multi-
tasking library provided by the system vendor. Compilers that process the multi-
proceés directives use functions from this library to implement the parallel execution
of FORTRAN programs. By isolating these system specific calls to the FORTRAN
component of the Data Collection Facility, only the builder_fortran program needs
to be modified to generate the appropriate calls for another vendor library if we move
to another platform. The utility functions in the glimpse_io.a library are platform

independent.

3. Results from Monitoring Parallel FORTRAN pro-
grams

In this section we describe our experiences monitoring aﬁtomatically paral-
lelized FORTRAN programs using the modified Glimpse software. We concentrate
on how the workload (e.g., the loop iterations) is divided among the participating
processes in the parallel region of the code. Before discussion the results, we will
first describe the algorithms that the runtime multiprocess library uses to divide
up the loop iterations. We recall from the discussion in section one that there is a
‘MP_SCHEDTYPE’ clause in the compiler directive that can be set, by the user, to
guide the scheduling in parallel region. The allowable values of ‘MP_SCHEDTYPE’

and their meanings are list below [Ref. 18]:

79

Workload Schedule | Meaning

SIMPLE Each process executes N/P consecutive iterations
starting at Q * (N/P) iterations. The first

process to finish takes the remaining chunk,

if any.

DYNAMIC Each process executes C iterations of the loop,
starting with the next undone chunk unit,
returning for another chunk until none are

left. '

INTERLEAVE | Each process executes C iterations at (C * Q) + base,
(C * 2Q) + base, (C * 3Q) + base, etc. The base =
1,14+ (C*P), 1+ (C*2P), etc.

GSS Guided Self-Scheduling, each process executes
chunks of decreasing size, first N/2P, then N/4P,
etc

The variables used in the Table are as follows:

N-Number of iterations in the loop, determined from the source or at run time.

P-Number of participating lightweight processes, set by the default or by the
user via an environment variable.

Q-Unique identification of a lightweight process, in the range from 0 to P-1.

C-“Chunk” size, set by compiler directive or by environment variable.

The SIMPLE method divides the loop iterations among processes by dividing
them into contiguous pieces and assigning one piece to each process. For example, if
N is 500, and the number of processes P is 4, then process 0 is assigned loop iterations
1 to 125, process 1 is assigned loop iterations 126 to 250, etc.

In the Dynamic method, the iterations are divided into pieces. The size of a
piece is speciﬁed with the CHUNK clause. As each process finishes a piece, it grabs
the next available piece. For example, if N is 500, P is 4, and CHUNK size is 25,
then a possible scenario for process 0 can have it works on iteration 1-25, 101-125,

151-175, 201-225, 301-325, 401-425, 476-500, etc. When a process runs on a CPU

80

without much compeﬁition for CPU cycles, it may process more than an‘equal share
of chunks. |

The Interleave method also breaks the iterations into pieces of size specified
by the CHUNK variable. Execution of those pieces is interleaved among the processes.
For example, for P=4, N=500,v C=25, process 0 would work on iterations 1-25, 101-
125, 201-225, 301-325, 401-425; and process 1 works on iteration 26-50, 126-150,
226-250, etc. Although the number of iterations executed by each process is the same
for SIMPLE and INTERLEAVE, INTERLEAVE can outperform SIMPLE when the
amount of work to be done in an iteration is a function of iteration number.

In the GSS method, the size of pieces varies depending on the number of
" iterations remaining. In the beginning, larger pieces are parceled out, and as the
work nears completion, smaller pieces are parceled out.

We use the example program (see below) from section oné to demonstrate the
value of the modified Glimpse with automatically parallelized FORTRAN code. Two
data logging calls, event_x() and event_y(), denote the entry and exit events for
each iterations inside the parallel region. A call to glimpse_init() initializes the -Daté
Collection Facility, and a call to glimpse_terminate() flushes event data in the memory

buffers to the log files.
program mploop

integer maxlen

parameter (maxlen = 400)

real*8 a(maxlen), b(maxlen), c(maxlen)
integer len

len=maxlen

C
C Initialize glimpse Data Collection Facility
C
call glimpse_init()
C
C$DOACROSS SHARE(a,b,c,len) ,LOCAL(i) ,MP_SCHEDTYPE=SIMPLE
C$& CHUNK=25 ‘

C MP_SCHEDTYPE=DYNAMIC

81

C MP_SCHEDTYPE=INTERLEAVE

C MP_SCHEDTYPE=GSS
C
doi=1, len
call event_x()
a(i) = b(i) + c(d)
call event_y()
end do
C : :
C Close glimpse Data Collection Facility
c |
call glimpse_terminate()
stop '
end

To evaluate the effect of various workload schedules, we ran the example pro-
gram multiple times with each schedule mode under different load condition. The
number of processes, P, is set to 4, the number of iterations, N, is 400, and the chunk
size, C, is 25, for all runs. The example program was run on a 6-processor Silicon
Graphics R12000 platform, under various load cohditions. The load of the system
during the execution was recorded using the UNIX ‘w’ command. The load on the
system gives an indication of the average number of jobs in the CPU queues. For
the purpose of this discussion, we consider a load value of less than 1 as low, a value
between 1 and 3 as medium, and a value of 4 ‘or greater as high.

Figures 17 and 20 show representative results for the example program running
with the SIMPLE Wofkload schedule under a low load condition. Each participating
process grabs an equal share of workload and they all take about the same amount
of time to complete their portion of the workload. This is shown by all 4 processes
reaching the event count of 100 at about the same time (Figure 17), and none of the
participating processes experience any delay (Figure 18). In some instances, one of
the processes is temporarily blocked. This is shown by the horizontal line in Figure
19 and the corresponding gap in the event sequences in Figure 20. The temporarily

blocked processes took longer to finish. Because of the synchronization barrier at the

82

Figure 17. Plots of the counts of event_y as a function of time. The plots are for
4 lightweight processes using the SIMPLE schedule type under a low system load
condition. Each event_y denotes the completion of a single loop iteration. The Time
increases to the right and the number of counts is indicated on the vertical axis.

83

Figure 18. Plots of occurrences of event_y for 4 lightweight processes using the SIM-
PLE schedule type under a low system load condition (from the same data as in
Figure 17). Each event_y denotes the completion of a single loop iteration. The Time
increases to the right.

84

3 Count

i 2
@ .

Figure 19. Plots of the counts of event_Y as a function of time. The plots are for
4 lightweight processes using the SIMPLE schedule type under a low system load
condition. The horizontal line near count value 45 shows that the count value for
that particular process is not increasing with time. This is an indication that the
process is blocked during the duration that count value is not increasing. The Time
increases to the right and the number of counts is indicated on the vertical axis.

85

Figure 20. Plots of the event_y for 4 lightweight processes using the SIMPLE schedule
type under a low system load condition (from the same data as in Figure 19). Each
event_y denotes the completion of a single loop iteration. The large gap for process
0 (at the top of the graph) corresponds to the horizontal line of Figure 19. The gap
indicates that the corresponding process is blocked during that period of time.

86

end of the loop, the completed processes must wait until the last process finishes. As
a result, the overall execution time is longer in cases where blocking occurs in at least
one process. |

We next look at the eiample program running with the DYNAMIC workload
schedule under low to medium load conditions; Figure 21 and 22 show results under
a low load condition. The pattern is very similar to the SIMPLE schedule type in
that each participating process grabs an equal share of the workload and they all
require approximately the same amount of time to complete their portion of the
workload. However, runs using the DYNAMIC schedule mode seem to take slightly
longer time to complete than runs using the SIMPLE schedule mode under similar
load conditions. This is probably due to the higher overheads associated with dynamic
scheduling, given that the loop calculation time is very small.

Next results from running under a medium load condition with DYNAMIC
scheduling are shown in Figure 23 and 24. Here, the number of iterations is not
equally distributed across the processes. Process 3 was temporarily blocked, so it
- completes fewer iterations than the other processes. All of the processes finished
‘at about the same time. As would be expected, the time it takes to complete the
loop using DYNAMIC scheduling type under a low to medium load condition is, on
average, slightly longer than the SIMPLE schedule type under a low load condition.

Next, we examine results using the GSS and INTERLEAVE scheduling poli-
cies. Under a low to medium load condition, the example program running with a
GSS scheduling policy (Figures 25 and 25) exhibits similar behavior to that of the
DYNAMIC scheduling pblicy’. The workload across the processes is not equally dis-
tributed as in the DYNAMIC case, when a process finishes its chunk of workload,
it grabs the next available chunk, so some processes perform more iterations than
others. For the INTERLEAVE schedule type, the workload distribution across all of
process is the same under oﬁr example (we chose the total number of loop iterations

and chunk size such that each process gets 4 chunks, each of size 25). The average

87

il

g
i
!
1

event_y 3 Couni

Figure 21. Plots of the counts of event_y as a function of time. The plots are for 4
lightweight processes using DYNAMIC scheduling under a low system load condition.
Each event_y denotes the completion of a single loop iteration. The Time increases
to the right and the number of counts is indicated on the vertical axis.

88

Figure 22. Plots of event_y for 4 lightweight processes using DYNAMIC scheduling
under a low system load condition (from the same data as in Figure 21). Each event_y
denotes the completion of a single loop iteration. The Time increases to the right.

89

Figure 23. Plots of the counts of event_y as a function of time. The plots are for
4 lightweight processes using DYNAMIC scheduling under a medium system load
condition. The horizontal line indicates that one of the processes is temporarily
blocked during the execution in the Do loop. The Time increases to the right and
the number of counts is indicated on the vertical axis. '

90

Figure 24. Plots of event_Y for 4 lightweight processes using DYNAMIC scheduling
under a medium system load condition (from the same data as in Figure 23). Each
event_y denotes the completion of single loop iteration. Process 0 (at the top of the
graph) has the most number of event.y, i.e., it executes more iterations of the loop
than other processes. Process 3 was blocked for a period of time (as shown by the
gap between the event sequences). Consequently, it completes the least number of
iterations of the loop. '

91

time to finish the loop is about the same as with the SIMPLE schedule type. This
result is expected because the purpose of interleaving iterations across the loop is
" to improve the access to shared arrays via cache optimization. Since our example
uses small arrays (three 400 element arrays of double precision values), the cache
optimization is not an issue.

We repeated the experiment with different schedule types by running the same
example program under a high load condition. Figures 27 and 28 show the result
for the SIMPLE schedule type under a high load condition. The execution time is
. significantly longer than under the low system load condition. In Figure 28 three of
the processes have completed their work, but are forced to wait for the remaining
process to finish. The waiting time accounts for most of the execution time for this
program to complete.

Next, we look at the DYNAMIC schedulg type under a high load condition
(Figures 29 and 30). The plots show that although we request 4 processes, only 3
processes participate in the parallel region due to the high system load. The workload
is not equally distributed among the 3 processes and all of them finish about the 'same
time. The time to complete the loop for the example program using the DYNAMIC
scheduling policy under the high load condition is longer than under the low load
condition. However, it does not suffer from the significant performance degradafion
as experienced by the example program using a SIMPLE scheduling policy under a
high load condition.

Next, we examine the results for GSS and INTERLEAVE scheduling types
under a high load condition. The example program running with a GSS scheduling
policy under high load condition (Figure 31 and 32) exhibits similar chafacteristics
to that of running with the DYNAMIC scheduling policy. Like the previous case,
although 4 processes were requested, only 3 processes participated in the parallel
region due to high system load. The workload is not equally distributed among the 3

processes, but they all finish about the same time. The performance of the example

92

Figure 25. Plots of the counts of event_y as a function of time. The plots are for 4
lightweight processes using the GSS scheduling under a low system load condition.
Each event_y denotes the completion of a single loop iteration. The Time increases
to the right and the number of counts is indicated on the vertical axis.

93

Figure 26. Plots of event_y for 4 lightweight processes using GSS scheduling under a
low system load condition (from the same data as in Figure 25). Each event_y denotes
the completion of a single loop iteration. The Time increases to the right.

94

event_y 3 Count

Figure 27. Plots of the counts of event.y as a function of time. The plots are
for 4 lightweight processes using the SIMPLE schedule type under a high system
load condition. Each event_y denotes the completion of a single loop iteration. The
execution time of this case is significantly longer than the SIMPLE schedule, low
system load case (see Figure 17). Three of the processes have finished their loop
iterations, this is indicated by vertical lines on the left edge of the graph that reach

the count value of 100. The remaining process did not complete its work until much

later. The Time increases to the right and the number of counts is indicated on the
vertical axis.

95

Figure 28. Plots of event_y for 4 lightweight processes using SIMPLE scheduling
under a high system load condition (from the same data as in Figure 27). Each
event_y denotes the completion of a single loop iteration. The Time increases to the
right. The clusters of events on the left edge of the graph show that Processes 0, 1,
and 3 have finished their portion of loop iterations, where as the process 2 did not
complete its portion of loop until much later, as shown by the cluster of events on
right edge of the graph. '

96

Figure 29. Plots of the counts of event_y as a function of time. The plots are for 4
lightweight processes using DYNAMIC scheduling under a high system load condition.
The Time increases to the right and the number of counts is indicated on the vertical
axis. Although the workload is not evenly distributed among the processes, even
under the high load condition, they finish about the same time.

97

Figure 30. Plots of event_y for 4 lightweight processes using DYNAMIC scheduling
under a high system load condition (from the same data as in Figure 29). Each event_y
denotes the completion of a single loop iteration. Although we request 4 processes,
only 3 processes participated in the parallel region due to high system load.

98

program running with the GSS scheduling policy under high load condition does not
degrade significantly. This is not the case with the example program running with
the INTERLEAVE schedule type under the high load condition (Figure 33 and 34).
Like the SIMPLE schedule type under the high load condition, the example program
running with the INTERLEAVE scheduling policy can experience a significant slow
down if one of the participating processes is blocked. The remaining processes must
wait until the last process finishes. As shown in Figure 34, process 0, 1, and 2 spend
a large portion of time idling.

The results from running fhe example FORTRAN program with different
workload schedules indicates that the DYNAMIC and GSS scheduling type have
better overall performance characteristics as the system load increases, at least when
the computation is simple. The strategy of allowing processes to grab more chunks of
workload (i.e., be more greedy) as they become available for work is a better overall
sfrategy. It minimizes the amount of wait time when the system load is high and

other processes are competing for the available CPU resources.

99

event_y 3 Count

Figure 31. Plots of the counts of event_y as a function of time. The plots are for 4
lightweight processes using the GSS schedule type under a high system load condition.
The Time increases to the right and the number of counts is indicated on the vertical
axis. Although we request 4 processes, only 3 processes actually participated in the
parallel region. The workload is not evenly distributed among the processes but they
finish about the same time. ‘

100

Figure 32. Plots of event_y for 4 lightweight processes using GSS scheduling under
a high system load condition (from the same data as in Figure 31). Each event_y
denotes the completion of a single loop iteration. Although we request 4 processes,
only 3 processes (0, 1, and 3) actually participated in the parallel region due to high
system load.

101

Figure 33. Plots of the counts of event_y as a function of time. The plots are for
4 lightweight processes using the INTERLEAVE schedule type under a high system
load condition. Each event_y denotes the completion of a single loop iteration. The
execution pattern of this case is similar to SIMPLE schedule under a high system load
condition. (see Figure 27). Three of the processes have finished their loop iterations,
this is indicated by vertical lines on the left edge of the graph that reach the count
value of 100. The remaining process did not complete it work until much later. The
Time increases to the right and the number of counts is indicated on the vertical axis.

102

Figure 34. Plots of event_y for 4 lightweight processes using INTERLEAVE scheduling
under a high system load condition (from the same data as in Figure 33). Each event_y
denotes the completion of a single loop.iteration. The Time increases to the right.
The clusters of events on the left edge of the graph show that Processes 0, 1, and 2
have finished their portion of loop iterations, where as the process 3 did not complete
its portion of loop until much later, as shown by the cluster of events on right edge
of the graph.

103

4. Summary

In this chapter, we discussed the changes we had to make to Glimpse for it to
monitor automatically parallized FORTRAN programs. In particular, we show that
the language independent concepts (i.e., event and interval) and the Data Collection
Facility of Glimpse is easily adapted to monitor automatically parallelized FORTRAN
program.

Using the modified Glimpse, we evaluate the performance of a parallel ex-
ample FORTRAN program with different workload scheduling algorithms under dif-
ferent load conditions. The results indicate that dynamic scheduling schemes (i.e.,
DYNAMIC and GSS schedule), although having higher overhead due to workload
distribution, can perform better when the system load is high. Other scheduling
policies perfdrmance can degrade significantly under the high system load condition

when one or more participating processes is blocked due to competition with other

processes.

104

VII. SUMMARY

In this thesis we describe the design, implementation, and testing of a language
independent performance debugging tool called Glimpse. The Glimpse toolkit collects
event data from the execution of multi-threaded programs and provides visualization
tools to help programmers analyze the collected data. This work builds upon the
approach taken by Graze, a performance debugging tool that monitors C++ programs
that use the Solaris thread library, and extends it to applications using J ava threads

and to automatically parallelized FORTRAN programs.

1. Future Work

Before summarizing our experiences with Glimpse, we describe some future

work areas that will enhance Glimpse.

a. Adding generalized math expressions to the interval
definition '

In chapter IV, we describe the generalization of the interval definition
to allow for partial matching of attribute values and Boolean relationships between

the event’s attributes. An example of this interval definition is:

interval Transit[s:Sendmsg -> r:Recvmsg]
{ s.src=r.src & s.msgsize = r.msgsize } = line;

In this example, interval Transit requires the attribute value src of Sendmag and
Recvmsg to match, and that the msgsize value of the Sendmsg event bé equal to
the msgsize value of the Recvmsg event. It would be useful to add generalized
mathematical expressions to the interval syntax to further generalize the interval
definition. This capability would allow the user to define intervals by specifying
certain threshold values. For example, to define intervals where the length of message

sent is greater than 100 words, we would write

interval Transit[s:Sendmsg -> r:Recvmsg]
{ s.src=r.src & s.msgsize/WORDSIZE > 100 } = line;

105 .

b. Enhancement tb the visualization tools-

Currently, the interval definition is defined in the specification file. This
file is read by the visualization tools, gorge and nibble, during start up. To visualize
the event data with a different interval definition, the user needs to modify the speci-
fication file and restart the visualization tools i order for it to display the changes to
the interval definition. It would be useful to add the capability, in the visualization
tools, to allow the user to create new interval definitions, and to edit the existing
interval definitions on the fly. This would make it less cumbersome for the user to
experiment with different interval specifications. .

Another enhancement to the visualization tools is to add the capability -
to associate the log data being displayed with the thread name from which it came.
Recall from the discussion in chapter IV, each thread is mapped to a unique log file
by the Data Collection Facility. . In the current implementation, the logical thread
name used by the program during execution is not saved to the log file. Therefore,
to associate data from a log file back to a particular thread requires some careful
Interpretation of plots and understanding of the program code by the user. To make
this process easier for users, we should modify the Data Collection Facility to save
the logical name of the thread along with the data to the log file. The visualization

programs can then use this information to label the plots with the thread names.

c. Ithroving the performance of Glimpse’s visualization
tools for large data sets

After we successfully tested the FORTRAN version of Glimpse with var-
ious workload scheduling policies (chapter VI), we applied it to a Navy Operational
Weather Forecast application. This application, COAMPS, is a weather simulation
program written in FORTRAN. The current operational version of COAMPS re-
lies heavily on the compiler-directive approach to optimize the runtime performance.
However, we noticed that its performance does not scale well in the multiprocessor

environment. For example, the m‘a,ximum speedup of this application when running

106

on SGI multiprocessor systems is approximately 2.6 times that of the single processor
- mode. ":[‘his maximum speedup value is observed when the COAMPS application is
running with 4 processors.

We instrumented this application with Glimpse in an attempt to iden-
tify the possible performance bottlenecks. The instrumented code did not add any
s_igniﬁcant overhead to the COAMPS run time; the instrumented code is perhaps 2
to 3 percent slower than the non- instrumented code. The data volume generated
by the instrumented code was about 50 mbytes (approximately 250,000 events) for
a typical COAMPS rﬁn. The gorge tool took almost an hour to load the event data
and display the intervals. The slowness appears to be related to the algorithm that is
used to build the interval instances from the event data stream. Given a number of
event instancgs in the event stream n, this algorithm finds all instances of an interval
type by starting the search at the head of the event stream and moving forward until
it finds a matching ending event. This algorithm performs this operation n times,
each time starting the seafch one position forward in the event stream. Thus, for the
worst case scenario, the total number of operations needed to find all instances of a
single event type is given by (n-1) + (n-2) + (n-3) + . . . + 2 + 1. This summation
reduces to n* (n- 1) / 2, which is on the order of n? for large n. Further investigation
is needed to improve the performance of this algorithm for handling large event data

sets.

2. Experiences using Glimpse with concurrent Java and
FORTRAN programs

We found that the event and interval concepts, together with visualization
tools that can display them, are very useful for programmers. It helps them to under-
stand the behavior of parallel applications, independent of the language environment.
The glirhpse’s event and interval concepts are similar to that of the event and state
used in the commercial software, TimeScan (see chapter II). However, in TimeScan

the event definitions are defined in the source code, whereas Glimpse uses a speci-

107

fication file to store fhe user-defined events. The specification ﬁle}approach is more
flexible and minimizes the changes to the source code of the program that the user
wants to monitor. Another important difference between TimeScan and Glimpse is
that TWmeScan does not support an interval that spans two threads. Glimpse does
not have this limitation.

Naturally, the process of porting Glimpse‘to the Java and FORTRAN envi-
ronment, and to other languages or programming environments, requires writing a
platform-specific Data Collection Facility that contains such utilities as functions to
handle input/output, timestamps, a utility program to translate event specifications
to data logging functions, and to handle other low level issues. From the perspective
of the user of the Glimpse tool, even such implementation differences are hidden. The
user only needs to concentrate on understanding the behavior of the program, and

describing those behaviors using events and intervals.

108

APPENDIX A. OVERVIEW OF JAVA AND
JAVA THREAD

This appendix presents a brief overview of Java and the mechanisms that it

provides for building multi-threaded programs.

a. Overview of Java

Java is an object-oriented programming language developed by Sun Microsys-
tems [Ref. 20]. One of its design goals is to allow programs to run on different type of
operating systems ahd architectures without recompilation or any other modification.
To achieve this goal of platform independence, the Java specification describes not |
only the programming language itself, but also the Java Virtual Machine (JVM) [Ref.
21] and Application Programming Interface (API). The concept of the Java Virtual
Machine is similar to that of a virtual machine operating system. It defines the inter-
face and functionality of the layer between Java programs and that of the underlying
architecture. A Java program is compiled into bytecodes, which are instructions un-
derstood by the JVM, and stored in class files. The class files are then loaded and
" executed by the Java Virtual Machine. To execute a Java program, a Java Virtual
Mach:me needs to provide support for (i) memory allocation, which includes garbage
collection, (ii) dynamic loading and verification of class files, (iii) index checking on
array access, and (iv) threads. It also provides an interface to native functions such
as those that support network and windowing environment operations. Currently
most implerhentations of the Java Virtual Machine are implemented in software and
thus depend on resources provided by the underlying native operating system. Conse-
quently there is some overhead and performance penalties associatéd with executing
bytecodes compared with executing typical native machine code.

In addition to the Java Virtual Machine, the Java specification defines a com-
prehensive API specification. In the Java version 1.1, there are approximately 500

classes for the core library alone, and this number is expected to get larger in the

109

next release. The core Java API, in essence, defines the software ihfrastructure that
should be available on all platforms that support Java. The current API includes
packages for graphical user interface components, thread libraries, input and output
streams, data structures, database access and internationalization of applications.

By providing a high-level and uniform API across various platforms, the Java
environment isolates programmers from the variations and differences in functionality
“and interfaces provided by different operating systems. For example, Java provides a
Thread class (java.lang.Thread) that contains constructors for creating a thread and
methods for setting the priority of a thread, suspending a thread, naming a thread
and getting information about a thread’s status. This package has the same inter-
face on both POSIX and Window NT platforms. This standardization of interface
- permits programmers to focus on building programs rather than on learning another
programming interface. It is the job of the commercial vendors and the freeware and
open-source community to provide an efficient and correct implementation of the Java
API library and JVM for their respective platforms.

In section (b.), we will describe the synchronization mechanism that is built
into the Java programming language, specifically, the monitor object, and how it is
used to ensure that a class method can have exclusive access to a variable or another
object in a Java program. Additionally, the wait and notify mechanism provided by
Java to transfer execution between threads is discussed. In the conclusion section, we

will summarize a few simple rules for using synchronization in a Java program.

b. Java Threads and Synchronization

The Java language is designed to support concurrent programming, with the
thread as the basic unit of concurrency. A concurrent Java program can have many
threads of execution. In some implementations of the Java Virtual Machine, threads
can execute on a separate processor if the underlying hardware is a multiple-processor
system. In such systems the execution of threads can overlap in time. On single-

processor systems, the Java Virtual Machine supports concurrent execution by inter-

110

leaving different threads to give the appearance of simultaneous execution.

A fundamental requirement for support of concurrent programming in any
language is the ability to provide synchronized access to a shared variable or to any
of a set of related critical sections. In many concurrent programs mutual exclusion is
the technique used to ensure proper synchronization among threads. The following
discussion will focus on the language features provided by the Java programming
language for implementing synchronization using mutual exclusion.

A typical multi-threaded Java program consists of cooperating threads working
on some tasks, where each thread has its own program counter and stack. Within the
context of each execution thread, program instructions are carried out in sequential
order. Variables that are used, or assigned to, while each thread executes can be
considered as either residing in local or shared memory. Each thread has its own
copy of local variables, which are not visible to any other threads. A shared variable,
on the other hand, is visible to any thread that has a reference (i.e., a memory
address) to that variable. Cooperating threads can only pass information to one
another through shared variables. Therefore, the issue of synchronization in general,
and specifically mutual exclusion, is only of concern for accessing variable in shared
memory locations.

The simple Java program below can be used to illustrate that simultaneous
access to shared variables, without proper synchronization, could givé an incorrect
result. The program models the transaction between customers and their bank ac-

counts.
class bank_account {

/* The current dollar amount in the customer account */
int balance;

/* constructor, initialize account. */
bank_account (int initial_deposit) {
balance=initial_deposit;

}

111

void Deposit(int deposit) {
balance=balance+deposit;

}

void Withdraw(int amount_to_withdraw) {
/* check for sufficent funds in account */
if (balance >= amount_to_withdraw)

{
balance = balance-amount_to_withdraw;

}

else

{
/* issue warning about account overdrawn */
System.out.println("Account overdraft");
return;

}

The bank_account class has two methods: the Withdraw method that al-
lows the customer to remove money from the account and the Deposit method that
lets the customer put money in. The account is initially credited with some dollar

"amount when it is first created. To ensure overdraffc does not occur, the Withdraw
method first verifies that the account has sufficient funds to cover the transaction. If
there are insufficient funds, a warning message is issued and the Withdraw method
returns without changing the balance. Otherwise the balance of the account is re-
duced by the amount withdrawn.

To simulate customer activity on the bank account, we let each customer’s
transaction be represented by a thread. Suppose two customers try to withdraw
money from the same account. The Withdraw method of the bank_account object
is invoked twice, once by each separate threads. Each thread uses a different copy
of the variable amount_to_withdraw, bu’g modifies the same copy of the variable
balance, i.e., the variable amount_to_withdraw resides in the local memory of each

thread whereas the variable balance resides in the shared memory. In summary, more

112

than one thread can be executing in the same instruction code segment, but they each
have their own program counters and local working memory, and can access or modify
variables shared with other threads.

Before describing why synchronization is important, we need to look at how
a JVM schedules threads for execution. In the context of scheduling, a Java thread
that is not currently executing is either in a runnable or blocked state. Typically, the
runnable state is the default state for a thread unless it has performed an operation
that causes it to become blocked. For example, a thread that performs a network-
related operation such as reading from a socket when the data for that socket is not
yet available will become blocked. When the data becorﬁes available the thread will
become runnable again. In a multi-threaded Java program, every thread is compet-
ing for CPU cycles and it is up to the JVM to select a thread from among the pool
of runnable threads to be the currently running thread. JVM uses a priority-based
preemptive scheduling mechanism that guarantees the currently running thread al-
ways has a priority value equal to the highest priority value found among all runnable
threads.

A thread will remain as the currently running thread until a scheduling event
signals the JVM to select another thread from the pool of runnable threads as the
current running thread. There are three types of scheduling events: (1) when a
currently running thread becomes blocked or completes; (2) when a higher priority
thread enters the runnable state; and (3) when a timer interrupts execution. In the
case of scheduling event (1) or (2),' the currently running thread yields thé CPU
and the JVM selects another runnable thread. Not all implementations of a JVM
must support the scheduling event (3). On most UNIX platforms only the first two
scheduling events are supported, whereas on the Windows NT operating system, the
timer-based scheduling event is also supported. A multi-threaded Java program will
behave differently depending on the JVM scheduling events. For example, consider a

Java program that has two long running threads of equal priority, and assume that

113

neither thread performs an instruction that will cause it to becbme blocked. On
UNIX systems, if thread 1 is started first and never enters the blocked state, it will
continue to run until it is completed. When thread 1 is completed, it leaves the
runnable st_até, thus creating a scheduling event, at which time thread 2 becomes the
currently running thread. Running the same program on a JVM that supports timer-
based scheduling, thread 1 starts first and at some time later a timer-based scheduling
event occurs. Thread 2 becomes the newly running thread and is executed by the
CPU until the next timer-based scheduling event, at which time thread 1 becomes
the running thread again. Under the timer-base scheduling scheme, thread 1 and 2
alternate as the currently running thread (i.e., similar to a round-robin scheduler),
with each thread getting a time-slice of CPU cycles. Thread 2 might even finish
before thread 1. '

From the perspective of a running thread, it does not know when a scheduling
event will occur. The switching of execution context from one thread to another
thread is performed by the JVM; a running thread can be interrupted at any time
as the result of any of the scheduling events described above. We now return to the
synchronization issue and our example program. We will assume the bank_account
program is running on a JVM with timer-based scheduling.

In the follovving scenario, suppose the bank account is a joint account and
that two people attempt to obtain cash from their joint account at the same time.
For example, the husband (thread A) is withdrawing $80 and the wife (thread B) is
withdrawing $50 from the same account. Assume the initial balance is $100. If after

thread A executed the first line of code
(if (balaﬁce >= amount_to_withdarw)),

but before it can execute the next line of code to subtract the amount from the
variable balance, a timer-based scheduling event occurs. The JVM will now select
the next thread from the runnable thread pool with the highest priority value as the
current running thread. Since both thread A and B have the same priority, the JVM

114

will move thread A to the runnable pool and make thread B the currently running

thread. Thread B executes the following line of code
(if (balance >= amount_to_withdarw)).

The variable balance is still at $100 because thread A was interrupted before it could
modify the value of balance. Thread B continues to execute and subtracts $50 from
the joint account, and the variable balance is updated to reflect the new value of
$50. Thread B finishes execution by exiting the Withdraw method and a scheduling.
event is generated. The JVM selects thread A as the new running thread. Thread A

resumes execution at the following line of code:
balance=balance-amount_to_withdraw;

The variable balance has the value of $50 at this point, and now thread A subtracts
$80 from $50. The new value of the variable balance is negative $30 dollars, which
is clearly incorrect. This error results from lack of synchronization when multiple
threads try to access and modify a shared variable. In this examplie, a mechanism
is needed to provide proper synchronization to the shared variable balance. Such
a mechanism would immediately block thread B when it tries to execute the With-
draw method, because thread A was already in this same method. This type of
synchronization is called mutual exclusion. Mutual exclusion ensures that only one
thread can.enter a particular code segment or method that modifies and uses the
same shared variable. These code segments or methods are called critical sections. If
mutual exclusion is used in this example, when thread B ‘tries to execute the With-
vdraw method, it will be blocked and the JVM will re-select thread A for execution.
After thread A completes, thread B is unblocked and is made the currently executing
thread by the JVM. Thread B now sees variable balance has a value of $20 and
realizes that there are insufficient funds for withdraw.

Java supports mutual exclusioﬁ with a mechanism known as a monitor. The

concept of the monitor was first introduced by Brinch Hansen [Ref. 22, 23]. A

115

monitor acts as a lock to a section of program code, allowing only a single thread to
enter that code segment at a time. Any object in Java can be a monitor. To place
a block of code under the auspices of a single monitor, the Java language provides
a reserved keyword synchronized. For example, to ensure that variable balance is
properly updated when accessed by different threads, we modify the bank_class by
adding the synchronized statement to the block of code that encloses the variable

b_alance.

void Withdraw(int amount_to_withdraw)

{
synchronized(this) { /* Acquire monitor, beginning of the
critical section, use ‘this’ object
as the monitor */
if (balance >= amount_to_withdraw) /* check for sufficent
‘ funds in account */
{ .
balance = balance - amount_to_withdraw;
}
else
{
/* issue warning about account overdrawn.x/
System.out.println("Account overdraft");
return;
}
} /* Release monitor, end of the critical section */
} . .

The statement ‘synchronized (this)’ marks the beginning of the critical section
to be placed under the monitor. The token following the ‘synchronized’ is the reference
to the object acting as the monitor for this code segment. In this example ‘this’ refers
to the object which the Withdraw method belonged to. Other objects can also be
used as the monitor in place of ‘this.” For instance, we could have defined a string
object in the class declaration of bank_accdunt and used that string ébject as the

monitor and it would have the same effect.

116

class bank_account {

/* Monitor object for each instance of the banmk_account,
each account has its own monitor. */
String customer;

/* The current dollar amount in the customer account */
int balance;

/* constructor, initializes the customer account. */
void bank_account(String customer_name, int initial_deposit)

{

customer=new String(customer_name);
balance=initial_deposit;

void Withdraw(int amount_to_withdraw)

{
synchronized (customer) /* Acquire monitor at the
beginning of the critical
section, use the string
variable ‘customer’
as the monitor. */
{
if (balance >= amount_to_withdraw) /* check for sufficient
funds in account */
{
balance = balance - amount_to_withdraw;
}
else
{ A
/* issue warning about account overdrawn */
System.out.println("Account overdraft");
return;
}
} /* Release monitor, end of the critical section */
}

Before the current thread (the thread that the CPU is currently executing

117

instructions for) can exeéute code inside the critical section, it must first enter the
monitor guarding that critical section. If another thread has already entered any
critical section protected by the same monitor, then the current thread must wait
until the other thread exits the monitor. Many critical sections can be associated
with the same monitor, but only one thread can be granted that monitor at any one
time. In other words, if one thread is executing in a critical section guarded by a
monitor, than no other threads can enter other critical sections guarded by the same
monitor. Conversely a single thread can enter more than one monitor if need be. For
instance, a thread can execute in one critical section guarded by monitor A and then
enter another critical section guarded by monitor B, provided that no other threads
have entered monitor B. This is perfectly legal as the mutual exclusion mechanism in
Java is based on scope of the monitor object.

If a thread has been granted the ownership of a monitor, and tries to acqﬁire
the same monitor again the thread would not be blocked. This situation arises when
the currently‘executing thread, while inside a critical code section tries to execute
another code segment guarded by the same monitor. For example, a thread making
recursive calls from a synchronized method. The design of Java monitors allows the
same thread to re-enter the critical section once it acquires the monitor, or to enter
other critical sections guarded by the same monitor. This re-entrant behavior of the
monitor eliminates the possibility of a thread waiting on itself.

Returning to the bank account example, we consider the situation that occurs
when one customer tries to withdraw more money than is available in the account.
Instead of returning with an error message, we may prefer that the customer wait
until another customer has deposited additional money into that account to cover
the withdrawal. This is a very common pattern in many multi-threaded programs
where a thread executing in a critical section might encounter a condition such that
it cannot proceed until another thread can act to change that condition. What is

needed to support this type of programming construct is a mechanism to transfer

118

the éxecution from one thread to another thread in the critical section. In order
for this to work, the currently executing thread must temporarily halt and give up
its claim to the monitor so that another thread can execute in that critical section.
Once the condition is satisfied by the action of another thread, the original thread
can then proceed again. The Java language provides a wait and notify mechanism for
this purpose. Of course, the inclusion of wait and notify are necessary to make the
mechanism that we have b’een discussing truly qualify as a monitor. Without them,
semaphores may have been included in the language and would likely have been more
efficient. ' '

To see how wait and notify work, we modify our bank account program so

that when a customer overdraws an account, he does not receive an error message but
instead merely waits until another customer deposits more money into that account.
class bank_account {
/* Monitor object for each instance of the bank_account,
each account has its own monitor. */

String customer;

/* The current dollar amount in the customer account */
int balance;

void Deposit(int deposit)

{
synchronized (customer)
{
balance=balance+deposit;
customer.notifyAl1(); /* Notify any thread waiting on
this monitor */
}
}
void Withdraw(int amount_to_withdraw)
{ .
synchronized (customer) /* Acquire monitor */
{

119

while (true)

{
if (balance >= amount_to_withdraw) /* check for
' sufficient fund */
{
balance = balance - amount_to_withdraw;
return;
}
else
{ /#* Relinquish monitor and put the current
thread on the wait queue of this monitor.
Catch interrupted exception if this thread
unexpectedly returns from wait() method. */
try { customer.wait(); }
catch (InterruptedException e) { System.exit(1); }
} v
}
} /* End of critical section */

The modified code works as follows. If a thread tries to withdraw more money
than what is in the specified bank account, it will be suspended from execution
(i.e., it is blocked in the wait() method call) until some other thread has called the
Deposit() method. After another thread deposits money into the account, it calls
the notify All() method before exiting the Deposit() method. The notifyAll()
method sends a signal to all threads that are blocked in the wait() method. These
threads are removed from a wait queue and placed in the ready queue by the JVM.
When a blocked thread returns from the wait() method it checks whether there are
sufficient funds in the account. If not, it calls the wait() method again and repeats the
process until other threads have deposited sufficient money to cover the withdrawal.
The wait() and notify All() can only be called from inside a monitor, i.e., only the
thread currently inside the monitor can invoke the wait() and notify All() methods
of that monitor. -

Unlike the wait() method, the sleep() or the yield() method (from the

120

java.lang.Thread library) has no effect on the state of the monitor when invoked. It
merely tells the JVM to select another thread és the currently running thread. When
the wéit() method is invoked, it places the current thread on the wait queue of the
monitor and relinquishes mutual exclusion prior to suspending the current thread.
The notify All() method releases all threads waiting on a condition in that same
monitor. The wait() and notifyAll() methods are not part of java.lang.Thread
library but are an integral part of the Object class and are tightly integrated into
_ the JVM. They provide a reliable mechanism to safely transfer the control from one
thread to another thread in a monitor. _

Suppose instead of calling the wait() method, a thread invokes the sleep() or
yield() method while inside the Withdraw() method to temporarily suspend itself
so that another thread can be executed by thé JVM. In this example, calling the
sleep() or yield() method would lead to a dead-lock situation when executing on a
machine with a non-preemptive thread scheduler: one customer starts to perform a
withdraw action but cannot compléte that transaction until more money is deposited
by another customer. However the deposit action by another customer cannot begin

_until the Withdraw method is completed because the depositing thread would not
be permitted to enter the monitor.

The Java language providés the basic synchronization primitives via the moni-
tor and the wait and notify mechanisms. Other, higher-level, synchronization facilities
can be built on top of these basic primitives. For example, counting semaphores, can
be built from the wait() and notifyAll(). In the basic wait and notify mechanism
if a notify All() method is called when there are no threads waiting on a monitor,
then that notification event has no effect. Counting semaphores, however, maintain
state information that indicates how many times wait() or notifyAll() are called.
When one thread calls the notifyAll() method and there are no threads waiting,
the notification event causes a value to be incremented in the data structure of the

associated semaphores. Counting semaphores are useful for providing synchroniza-

121

tion to a shared buffer in a producer-consumer scenario. Similarly, other higher-level
synchronization facilities such as those needed to solve the multiple readef, single

writer problem can be constructed using the basic primitives provided by Java.

¢. Summary of Java Threads and Synchronization

In this appendix, we reviewed the support for writing multi-threaded program
provided by Java and some basic concepts for synchronization. These include:

a. Coopefatiﬁg threads that communicate via shared variables. If the correct-
ness of program execution depends on the order in which threads act on the shared
- variable, then access to these variables needs to be synchronized.

b. Java provides an elegant and simple mechanism for synchronization. To
ensure synchronized access to shared variables, code segments that act on shared
variables should be placed inside a synchronized block or method.

c. Before a thiead can execute a synchronized block or method, it first acquires
the monitor associated with that block or method. A monitor can be associated with
multiple synchronized blocks or methods. Howéver, only one thread can execute
inside a synchrorﬁzed block or method of a given monitor at any time.

d. To transfer control of program execution between threads from inside a syn-
chronized block or method, a program should use wait() and notify All() methods
provided in the monitor class. These methods guarantee that the monitor is relin-
quished when a thread is placed in a wait state, and that the monitor is re-entered
prior to resuming execution.

e. Other forms of synchronization techniques such as the counting semaphore
for controlling multiple access to limited resources, and mechanisms that can be used
to solve such commonly occurring problems as the multiple-reader, single-writer can

also be constructed using the basic monitor mechanism provided by Java.

122

APPENDIX B. GRAMMAR OF THE GLIMPSE
SPECIFICATION LANGUAGE

This appendix describes the grammar for the Glimpse specification language.
The italicized words are non-terminals; words enclosed by single quotes are literals.
Tokens that denote keywords used by the language are prefixed with k_. The list of

keywords is given in section two.

a. Grammar of the Glimpse Specification Language

The goal of specification language:
spec = k.glimpse tdent events intervals k_end ’.’
Event has a name, associated attributes, and an optional graphic symbol.

events ::= NULL | event events

event ::= k_event ident memberlist =" symbol’;’ | k_event ident memberlist ’;’

Event can have 0 or more attributes; attributes are separated by commas and

are enclosed by a left and right paréntheses.
memberlist ::= NULL | *(’ members Yy
members ::= NULL | ident | ident’, members

intervals ::= NULL | interval intervals

An interval has a name, a start event, search direction, an ending event, a

matching criteria, and a graphic symbol.

123

interval ::= k_interval ident’[” ident search_dir ident’]’ match_type =" connec-

tion_type ’;’

A second form of interval production is presented below. This production

allows a boolean expression for matching the start and end events.

interval ::= k_interval ident [ident > ident search_dir ident * ident]’
where_clause '=" connection_type ’;’
search_dir =", | kforwards | k_backwards

The production below specifies the matching criteria for the start and end
event. If the match_type is NULL, then matching is done based on the start and end
event type matching only these events that occur within the same thread. Otherwise,

the matching is done on the attribute values.
match_type ::= NULL | k_match

The logical expression for matching the start and end events is shown below.

where_clause ::== NULL | ” ezpr”

expr ::= relation | relation k_and ezpr

relation ::= ident ’.” ident math_oper ident’.’ ident
math_oper := k1t | kle | keq | kge | kgt | kne

connection ::= k_connect (" connection_type ’)’
Graphics symbols for event and interval types are shown below.

symbol ::= symbol_type offset | k_symbol *(° symbol_type offset *)’

124

symbol_type ::= NULL | kx | k_plus | k-box | k-diamond
connection_type ::= NULL | k.line | k_rectangle

offset = NULL |’ ident

ident ::= k_ident

b. Keywords for the Glimpse Specification Language

The keywords used in the Glimpse speciﬁcatibn language are on the right hand
side of the statements below, shown as regular expression. As in the specifications
for lex, [a-zA-Z] means any character between a and z or between A and Z. Thé *
represents the Kleene closure.

k_graze ::= graze | Graze

k_event ::= event | Event

k_end ::= end | End

k_symbol ::= symbol | Symbol

k_connect ::= connection | Connection

k_interval ::= interval | Interval

k_ident ::= [a-zA-Z] [a-zA-Z0-9_1*

k_plus ::= plus | Plus

kxu=x[X

k_box ::= box | Box

k_diamond ::= diamond | Diamond

k._rectangle ::= rectangle | Rectangle

kline ::= line | Line

k_where ::= where | Where

k_match ::= match | Match

k_lt =<
kle ::= <=
keq ===

125

k_ge ::=>=

kgt = >

ke ::= 1=

k_and ::= &&

kor =[]

kot ::=!
k_number ::= [0-9]+
k_backwards ::= <~

k_forwards ::= ->

126

APPENDIX C. A NOTE ON EXPERIENCE
USING THE FINALIZE FACILITY OF JAVA’S
GARBAGE COLLECTION

This appendix discusses the experience we had using the Java Garbage Col-
lector to automatically invoke the clean-up methods needed by the Glimpse Data
Collection Facility.

The Java programming language provides a finalize() method that is in-
~ voked by the JVM for an object that is about to be garbage collected. The finalize
mechanism allows an object to perform any clean up actions such as closing the
file that it currently has open, before that object is freed by the system. We ex-
perimented with putting the code to properly close a log file inside a finalize
method of a ThreadData object, thus eliminating the need to explicitly call the
closeThreadData() and close() methods of the GzEvent object. One problem
we encountered is due to the asynchronous nature of the Garbage Collector in the
JVM. After a thread has exited its run method, the finalize () method might not
be called until the execution of the program has continued on for quite some time.
We wrote a short program to test the behavior of the Java Garbage Collector:
import java.util.*;
import java.io.*;

class invoke_final extends Thread{
public invoke_final()

{

super();

System.out.println("Create object: "+this.getName());.
}
protected void finalize() throws Throwable {

try {
System.out.println("finalize method called on id "+
this.getName());
} finally {
super.finalize();

127

}

}
public void run()
{
System.out.println("running id: "+this.getName());
}

public static void main(String[] args) {
/* Forever loop that creates new threads. */
while (true) {
/* Create some threads and run them. */
for (int i=0; i<100; i++) {
invoke_final x=new invoke_final();
x.start();
Thread.yield();
o
/* Request JVM to run Garbage Collector */
Runtime.getRuntime().gc();
/* Create more threads and run them. */
for (int i=51; i<100; i++) {
invoke_final x=new invoke_final();
x.start();

In this test program, a forever while loop creates threaded objects. Each time through
the for loop, an object is created and the t'hread associated with that object is
started. At the beginning of each loop, the reference to the previously créated object
is removed. Since there is no longer any réference to the object in the main program,
the JVM sees these unreachable objects as candidates for garbage collection. We
inserted a call to the Java Garbage Collector in the middle of the while loop. When
the Garbage Collector'runs, it should invoke the finalize() method, which prints
out a string indicating that the finalize method for this object has been invoked by
the Garbage Collector. |
When we ran this program, we saw different results under different JVM’s.

On the Windows NT system (SUN Java 1.1.8), at the point where we call

128

Runtime.getRuntime() .gc (), we saw outputs indicating that the Garbage Collector
ran. On the SGI (SUN Java 1.1.6), the Garbage Collector did not run until the outer
while loop had gone through 10 to 20 iterations. Each iteration of the while loop
creates 200 objects.

In summary, we would like the Glimpse data collection to close the log file when
a given event thread exits, and not to wait until some time later. Unfortunately, the
time of execution of the finalized() method, under the current JVM specification,
is implementation-dependent. For example, placing the clean-up code inside the

finalize () method works on the Windows N'T system, but not on an SGI.

129

THIS PAGE INTENTIONALLY LEFT BLANK

130

LIST OF REFERENCES

(1] Lantz Moore, Debra Hensgen, David Charley, Philip A. Wilsey, and Venkatram
Krishnaswamy. Graze: A tool for performance visualization and analysis. Inter-
national Conference on Parallel Processing, 1995.

[2] T. Hogan and T. Rosmond. The description of the navy operational global atmo-
spheric prediction system’s spectral forecast model. Monthly Weather Review,
119, 1991. '

[3] R. Hodur. The naval research laboratory coupled ocean/atmosphere mesoscale
prediction system (coamps). Monthly Weather Review, 125, 1997.

[4] Defense Modeling and Simulation Office. Master Environmental Library (MEL),
Technical Reference Guide, Characteristics and Performance, Version 1.1, 1998.

[5] T. Hogan and T. Rosmond. The description of the navy operational global atmo-
spheric prediction system’s spectral forecast model. Monthly Weather Review,

119, 1991.

[6] Sharon E. Perl, William E. Weihl, and Brian Noble. Continuous Monitoring and
Performance Specification. System Research Center, Report 153, 1998.

[7] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. The paradyn parallel performance measurement tools. IJEEE
Computer 28, 11, (November 1995), pages 37-46., 1995.

[8] Daniel A. Reed, Ruth A. Aydt, Luiz DeRose, Celso L. Mendes, Randy L. Ri-
bler, Eric Shaffer, Hueseyin Scimitci, Jeffery S. Vetter, Daniel R. Wells, Shannon
Whitmore, and Ying Zhang. Performance Analysis of Parallel Systems: Ap-
proaches and Open Problems. Department of Computer Science, University of
Illinois, 1997. '

[9] Randy L. Ribler, Jeffery S. Vetter, Huseyin Simitci, and Daniel A. Reed. Au-
topilot: Adaptive control of distributed applications. Proceedings of the 7th
IEEE Symposium on High-Performance Distributed Computing, Chicago, IL,
July 1998., 1998. ,

[10] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating mul-
tithreading and communication. Journal of Parallel and Distributed Computing,
37, 1996.

131

[11]) Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The autopilot
peformance-directed adaptive control system. Future Generation Computer Sys-
tems, special issue (Performance Data Mining), to appear., 1999.

[12] Daniel A. Reed, David A. Padua, Ian T. Foster, Dennis B. Gannon, and Bar-
ton P. Miller. Delphi: An integrated, language-directed performance prediction,
measurement, and analysis environment. The 9th Symposium on the Frontiers
of Massively Parallel Computation, Annapolis,” MD, 1999.

[13] Dolphin Interconnect Solutions, Inc. TimeScan, Event Analysis System User
Guide, version 3.0, 1997.

[14] Dolphin Interconnect Solutions, Inc. TimeScan, ELOG Library Programmer’s
Guide, version 3.0.1, 1997. ‘

[15] Sharon E. Perl and William E. Weihl. Performance assertion checking. Pro-
ceedings of the Fourteenth ACM Symposium on Operating Systems Principles,
1993. .

[16] Parallel Tools Consortium. Manual Page for the Portable Timing Routines, 1996.

[17] Sheng Liang. The Java Native Interface:. Programmer’s Guide and Specification.
Addison-Wesley Pub Co., 1999.

[18] Silicon Graphics, Inc.. MIPSpro Fortran 77 Programmer’s Guide, 1999.

[19] Silicon Graphics, Inc. UNIX MAN Page for MP, Multiprocessing directives for
MIPS FORTRAN Compiler, 1999.

[20] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley Longman, Inc., 1996.

[21] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley Longman, Inc., 1996.

[22] P. Brinch Hansen. A comparison of two synchronizing concepts. Acta Informat-
ica, Volume 1, Fasc. 3, (1972), pages 190-199., 1972.

[23] P. Brinch Hansen. Concurrent programming concepts. Computing Surveys, Vol-
ume 5, Number 4, (December 1973), pages 223-245., 1973.

132

INITTIAL DISTRIBUTION LIST

. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
F't. Belvoir, Virginia 22060-6218

. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.

Monterey, CA 93943-5101

. On-Scene Systems, Naval Research Laboratory, Monterey
Code 7542

7 Grace Hopper Ave.

Monterey, CA 93943

. Chairman, Computer Science
Naval Postgraduate School
Code CS,

833 Dyer Rd.

Monterey, CA 93943-5118 .

. Debra Hensgen

OpenTV, Inc.

401 East Middlefield Road
Mountain View, CA 94043

. Rudy Darken

Naval Postgraduate School

Code CS/DR, Computer Sciences Dept.
833 Dyer Rd.

Monterey, CA 93943-5118

. Cynthia Irvine

Naval Postgraduate School

Code CS/IC, Computer Sciences Dept.
833 Dyer Rd.

Monterey, CA 93943-5118

.b Lantz Moore
13249 Saddle Ridge Road
Lakeside, CA 92040

133

9. Susie Tsai
5534, South, Oakhurst Place
Seattle, WA 98118

10. Pedro T.H. Tsai
979 Syida Drive
Pacific Grove, CA 93950

134

